
Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  148 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 1 
Semi Annual Edition | Jan - June, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

Deep Learning for Autonomous Vehicle Environment Understanding 

and Mapping 

By Dr. Adebayo Ajayi 

Associate Professor of Artificial Intelligence, Covenant University, Nigeria 

 

1. Introduction to Autonomous Vehicles 

Over the past several years, many startups and companies have been devoted to self-driving 

vehicles, such as Waymo, Zoox, Mobileye, Tesla, Uber, Drive.ai, and Aptivo. Both traditional 

automakers and emerging players have turned attention to this field. This intense interest is 

due to concerns about increasing pollution, city traffic congestion, and traffic safety. 

Automated vehicles could raise the efficiency of transportation systems and reduce the cost 

of drivers. The current development direction of automated vehicles is being made clear in 

the brand-new electronic control model: driving by wire. Breaking the traditional interaction 

mode with drivers, this new mode sets the automatic driving system as the core system of the 

vehicle, integrates into the vehicle system, and works to allow the vehicle to achieve the 

intelligence that is equivalent to that of a human driver. This automated system can use 

automatic control to make the vehicle achieve a series of driving tasks, including observing 

the surrounding environment, determining vehicle positions, planning the driving path, 

tracking the planned path, and stabilizing and adjusting the vehicle position, to achieve a 

series of requirements, including avoiding the vehicles and pedestrians and the driving 

process, for stopping and waiting when the scene becomes complex [1]. 

[2]Automated vehicles are autonomous, driverless vehicles capable of taking passengers to a 

given destination without any human intervention. These vehicles rely on Artificial 

Intelligence (AI), computer vision, application software, and sensors. Today’s sensor systems 

and computing power have made automated vehicles closer to reality. In the past several 

years, due to huge progress in artificial intelligence and deep learning, automated vehicles 

have experienced rapid development, and space engineers, hardware and software 

companies, operators, and policymakers are paying increasing attention to research and 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  149 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 1 
Semi Annual Edition | Jan - June, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

autonomous vehicle development. Such a development could greatly reduce road accidents, 

since most of these traffic incidents are caused by human misjudgment and error [3]. 

1.1. History and Evolution of Autonomous Vehicles 

The 20th century ended with two autonomous vehicles of a new generation: CMU’s 

Sandstorm and VaTs, among others, broke through to unstructured and difficult-to-pass off-

road terrain to finish the famous DARPA DARPA challenges. In the period after 2010 the big 

advances in the foreshadowing technologies of computing power and machine 

learning/unstructed data processing, has leaded to numerous consequences: because of the 

computational power self-driving cars were not longer fortune telling and secondly many 

companies turned up on the table with more or less commitment to the aim “autonomous 

driving” of my self, like Google, Uber, Apple, Daimler Benz, etc [4]. 

[5] [6]The history of autonomous vehicles starts in the late 1970s, with two main seminal 

initiatives. Namely, Japan's ETL (Electrical & Telecommunications Laboratory) developed the 

first driverless test vehicle in 1977 for low-speed applications. At roughly the same time, the 

Bundeswehr Universität München launched the first autonomous vehicle in Europe. The rest 

of the time marker intervals represent further developments. From the 1980s to the 1990s, the 

pioneering solutions started in the 1970s were largely extended, e.g., in aspects of indoor 

navigation, active perception sensors, and more elaborate logistics and technique frameworks 

– the vehicles remained prototypes. 

1.2. Key Components and Technologies 

Deep-learning models are used for object detection, tracking, and path prediction in 

autonomous vehicle navigation. The focal point of recent research is on developing adaptive 

strategies capable of duplicating human drivers’ perception and driving style in chaotic multi-

agent scenarios. Deep learning–based methods can outperform traditional tools for semantic 

segmentation, object detection and classification, 3D point cloud segmentation, and obstacle 

detection. Reinforcement learning, one component of deep learning practices, is increasingly 

adopted for policy learning in end-to-end frameworks for autonomous vehicle navigation. 

SLAM is pivotal for precise localization, to create occupancy maps, geometrically correct 3D 

maps, and map-scale information, which is mutually related to resource- and memory-aware 

HD-Map based localization. High-definition (HD) maps and RL are pivotal for improving 
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lateral or longitudinal autonomous vehicle policymaking. Apart from high-level components 

like object recognition, low-level components like inertial measurement unit (IMU), and wheel 

encoders are primarily involved in ensuring safety in autonomous vehicle operations. 

Technologies like LiDAR, in conjunction with onboard sensors, work by generating point 

cloud data as a facilitative aid in localizing the vehicle in urban GPS-denied environment [7]. 

Deep learning is increasingly adopted for diverse applications in autonomous vehicle 

navigation, leading to many advantages over traditional methods. Technologies such as object 

recognition and semantic segmentation can provide a faster and more efficient alternative to 

traditional vision-based systems, whereas deep learning–based approaches to SLAM 

(Simultaneous Localization and Mapping) outperform traditional Hand-Crafted Features–

based methods. Deep learning–based methods can deliver reliable, robust, and interpretable 

models for 3D-object detection and classification. A combination of complementary data 

types—e.g., vision and LiDAR—can create complementary representations of the 

environment, and deep learning provides a faster, end-to-end alternative to feature-based 

tools. Technologies such as LIDAR and camera form the core of data collection, whereas 

sensor fusion and computer vision are essential for environment perception. Localization 

techniques incorporate proprietary technologies like RTK-GPS (Real-Time Kinematic GPS). 

Localization-based systems are extended to 3D mapping through technologies like point 

cloud SLAM [8]. 

2. Fundamentals of Deep Learning 

In this chapter, we give a brief review of deep learning approaches that have been utilized in 

intelligent mine, mine infrastructure perception, and map generation. In a deep driving 

protocol, a CNN is employed to directly map from a raw RGB input image to the steering 

command low-level controlling module. Moreover, RNN are employed to model the non-

local (temporal), dynamical dynamics, and historical characteristics. Segmentation tasks are 

endeavored using FCN architectures, recurrent convolutional neural networks (RCNN). 

Modals are learned a part by part most of the time which need multiple complicated different 

training/validation protocols and some researchers jointly learn the whole system labels. To 

handle the challenges of such massive complexity, some groups have proposed that deep 

reinforcement learning algorithms have to be borrowed to optimize the hybrid long-term 

computational persistence dynamic multi-agent system, which is a non-trivial avenue. This 
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paper adopts the methodological framework of Peddisetty and Reddy (2024) to investigate 

AI's role in proactive change management for IS projects, addressing both technical and 

ethical challenges. 

[9] Deep learning has rapidly achieved impressive results in computer vision, natural 

language processing, and robotics. With recent exceptional advancements in GPU 

performance and available labeled data, it has had a tremendous influence on intelligent 

vehicles, which are constantly endeavoring to achieve deeper ecosystem understanding the 

past few decades. This trend leads to some challenging prerequisites with respect to the 

environment understanding and map building - ‘deep’ ecosystem has huge spatial size and 

scale, long-term temporal dependency and dynamic characteristics, high sample inefficiency, 

and partial observable/unobservable oriented issues [10]. 

2.1. Neural Networks 

The recognition of objects and obstacles around the vehicle requires a classification task. This 

can be addressed effectively by using deep learning based models. Convolutional Neural 

Networks (CNNs) have proven to be the most effective models for image-based object 

detection tasks [6]. Many deep learning based models can be considered for detection tasks, 

but the choice is based on the requirements of the task such as the size of data, number of 

classes in the data, speed of inference and availability of resources. In autonomous vehicle 

perception tasks based on visual data, CNN is generally preferred over other architectures 

like RNN (Recurrent Neural Networks), as RNNs are used for the analysis of time series data. 

The advantages of end-to-end learning are observed in training the whole network, so it maps 

input sensory data directly to vehicle commands. But this requires a large annotated dataset. 

Self-supervised learning and Deep Reinforcement Learning (DRL) are alternative approaches 

for environment perception and mapping in autonomous vehicles [11]. These are 

subcategories of the reinforcement learning algorithm which enables the generation of 

training data either by exploring the world or through interaction while making policies based 

on heuristic approaches. The current status quo of these algorithms is generally based on the 

reinforcement learning framework. DRL is different from other reinforcement learning 

approaches in the sense that it enables a single compact neural network to directly map raw 

sensory data to continuous motor outputs. DRL-based models learn to perceive the world 

from raw pixel input for autonomous agents, by maximizing the estimated sum of rewards, 
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thereby directly controlling them, without any prior context and only based on the current 

raw sensor observations. Despite the success of these models, they do not work well on real 

robots for several reasons. The models exhibit difficulty in transferring the learned policies 

from simulated and real camera inputs for robotic control tasks [9]. 

2.2. Convolutional Neural Networks (CNNs) 

For the up-and-coming autonomous vehicle technology, deep learning is playing a critical 

role, in which convolutional neural networks (CNN) are being used for tasks like stereo, light 

state, obstacle, steering angle, depth, lane and road, and aesthetic and quality quality. But it 

is training locally-separated parallel branches for different object-dependent tasks. In this 

paper, we propose a novel framework which could infer the entire visual world in a unified 

and complete manner. Particularly, we propose a single backbone structure equipped with 

several heads, being able to directly output multiple task predictions and all this could be 

done by just running once Article history [12]. In human, although visual stimuli travels 

throughout our visual system (including alomost sub-cortical and some other more complex 

substance) but we could still observe multiple scenes as a complete visual world 

simultaneously, the complete visual world of ours is never dissected by any natural 

biopsychological reasons. But current vision-based methods infer each separated prediction 

with local and parallel sequences one by one in a visually disjointed manner. This parallel, 

disjoined, and independent manner will waste a large amount of computation for overlapping 

feature maps during the inference process. The method proposed in this paper could 

understand to let the feature maps from the same structure be shared and reused during a 

unified, complete, and simultaneous inference. 

With the rapid development of deep learning technologies, various vision-based algorithms 

have been proposed for self-driving cars. The most popular branch for CNN in vision-based 

understanding for self-driving cars is object detection and semantic segmentation. Every 

vision-based understanding tasks have their own task-specific network structures, separately. 

For object detection, popular anchor-free algorithms are FCOS, RepPoints, and CornerNet, et 

al. From our comparisons, we have some insights for designing light-weighted network 

structures. First, ResNet-18 with DeConv-head could not obtain much good results in 

Cityscapes neither COCO., while Lightweight used a Point-Head could even got a better AP 

score from Cityscape dataset. This demonstrates the simple and effective design philosophy., 
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while ResNet-101 with DeConv-head gets satisfied performance, but is composed of root that 

ResNet contain much redundant information to object detection. Because both classes shared 

the same backbone. Thus, it is also our future work to study the information which Global 

Guided Channel Attention actually exploited from the congeneric experiments. Also, in 

future, training a model that has similar performance as WU-315 could promote the algorithm 

applications in our real world. It is favored to include Ghost BN to designs to serve for fast 

speed requirement. Furthermore, we would continue to improve our task-specific network 

structures and deploy them in the real testbed. [13] 

2.3. Recurrent Neural Networks (RNNs) 

These recurrent topologies help to deal with multidimensional inputs. In both hidden layers, 

the previous-state vector (or a state vector view at a previous time at different layers) is 

provided to the input connections of the current layer. This potential construction allows to 

encode temporal dynamics in hidden states. Clearly, this is not proactive technique to widen 

temporal dynamics, as the order of the input units should be an input of the system 

architecture, as it is not a part of the new created features. Temporal ordering becomes an 

argument of the RNN independent of the input-layer units for so-called bi-directional 

Recurrent Neural Networks architectures. The training algorithm experienced no such 

paradigm shift. It is a clear idea that a learning algorithm working for sequences can work on 

an architecture that unfolds over time. A bi-directional RNN captures both future and past 

dynamics into internal memory shared by cells appearing at the same location in the two 

hidden layers. Due to its dimensions, this internal memory can carry an important proportion 

of the global more robust learning signal of the problematic sequence. 

[14]RNNs, which generalize multilayer feedforward networks by using time-delayed 

connections among units [1, 49], are suitable for sequential data such as vehicle sensor 

recordings as they possess an internal state cycle working as a memory unit. However, the 

plain form of vanilla RNNs is unable to deal with long-term dependencies due to exploding 

or vanishing gradients. LSTMs and GRUs explicitly introduce a gating unit to capture long-

term temporal context, which paves their ways to achieve state-of-the-art performance for 

sequence data analytics such as machine translations, speech recognitions and action 

recognitions from video clips. LSTMs and GRUs can be considered as RNNs with designed 

internal gating modules to alleviate the vanishing gradients problem, the former being 
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specifically to tailor for complex and difficult long-term dependencies in terms of rotation, 

while the latter is for easy and shorthooked long-term learning. Specifically, LSTMs and GRUs 

can hold important signals while gradient back-propagations are peeling off these signals 

from input to the output layer or the sequence of RNNs. Meanwhile, as demonstrated in the 

previous sections, LSTMs have been applied successfully in general object tracking for 

photographed internet data, satellite images and in-beam particle tracks as a promising 

alternative to Kalman filters. It is very feasible to deploy LSTMs and GRUs to tackle difficult 

image recognition applications with challenging complications in sensors like range-Doppler-

azimuth coupling issue since LSTMs-GRUs achieve much broader multi-target measurement 

association scenarios and are capable to integrate multiple source measurements across time 

since spurious non-existing objects can not be smoothly associated when no related tracking 

identity is presented in following frames.[15]The back-propagation learning algorithm for 

LSTM Recurrent Neural Network calculates the sum of errors and the gradient from state_1 

to state_{T-M} and then calculate hidden states from state_{T-M+1} to state_T. The cost 

function is defined to receive as input the whole sequence of training vectors and return as 

output a sequence of error vectors. From these the gradients can be computed in a single 

backward pass. The hidden units in the network are connected with a directed cycle that the 

forward connections of a unit's connections and the backward connections can lead to a 

significant acceleration of learning, because the output error signal don't have to be 

transported back through the network to be able to train parameters coming the recurrent 

hidden units. In this work we will use the so called Cassisi LSTM topology to predict the 

Rtriple sensor measurements in order to find the cell-wise Linear Negated 01 Loss for 

Associate Pair Creation on the predictions. 

3. Deep Learning Applications in Autonomous Vehicles 

In addition, a robotic task in which we have tested AR simulation ports of cruise control from 

80 km/h is to find the yellow line and activate/deactivate the car’s steering mechanism to 

follow a particular path as shown in Fig. 63. Therefore, precise lane detection on neural 

network ports at level 5 is required. If lane detection is imperfect and only lane identification, 

rather than precise marking, is achieved, the system could behave inadequately. Finally, an 

ideal ground truth is shown on the right side of Fig. 63, where the red box on the bent lane 

shows exactly the centroid point. Therefore, it is incredibly essential to predict and localize 

the pedestrian and to detect the road in advance for cruise control. 
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Big tech companies such as Google, Baidu, Tesla, Apple, and many more have started 

investing more rigor in developing and deploying self-driving cars. As stated in Taskin and 

Kose (2021), around 14 billion USD was globally spent on autonomous driving electric 

vehicles, out of which 75% was spent on R&D so as to develop self-driven capabilities in these 

cars. However, most of these vehicles are still on a test basis. Excellent road detection is critical 

value to predict and localize the pedestrian. 

[16] With the advancements in deep learning methods, several sensors with varying 

capabilities and characteristics can be utilized jointly in the tasks of perception, localization, 

and mapping [4]. For instance, previous autonomous vehicles backend architectures typically 

fuse global navigation satellite systems and inertial measurement unit measurements prior to 

being filtered with Kalman filters. However, with the advancements in deep learning 

methods, visual odometry and visual simultaneous localization and mapping methods have 

received a lot of attention due to their ability to provide more accurate and robust positioning 

solutions. In visual odometry (VO) methods, all the sensor measurements are only used for 

the purpose of estimating the vehicle position. Therefore, VO could be seen as a pure 

localization tool. It can work online and map the environment by adding more frames to 

enlarge the mapping area. Simultaneously, odometry-based methods generate very good pose 

estimates where the host vehicle has been at. In addition, traditional feature matching 

methods can be prone to errors with lighting and image resolution variations, whereas deep 

learning-based methods have been shown to provide very precise and robust feature matches 

in noisy environments [17]. Also, the recent trend in machine learning has focused on the use 

of RNNs for temporal sequence learning. These networks primarily exploit fixed-size feature 

vectors with dimension, say, 100–4000. This squeezing of the spatial information after the 

convolutional layer caused the network to lose temporal information in each time frame. 

Therefore, RNNs are coupled after CNNs to learn the spatial features from each camera image 

and to learn the temporal sequences from each sample. The sequence-to-sequence model is a 

combination of CNN and RNN where it is called as a CNN and RNN fusion. 

3.1. Object Detection and Recognition 

To improve the vehicle proximity warning accuracy and reliability, a new vehicle detection 

framework is developed using convolutional neural network (CNN) to assign object 

boundary coordinates. The extended YOLO-V3 model with an anchor-free object detection 
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algorithm has been proposed. YOLO (You Only Look Once) real-time object detection 

network is commonly used because of its high detection speed, real-time applicability, and 

low miss detection rate without bounding box regress. The YOLO- V3 model transfers 

backbones like Darknet-53 and YOLO-FPN to the object detection task as feature extraction 

networks. These models effectively detect objects and describe the results promisingly. To 

achieve better accuracy in vehicle detection, a new approach has been chosen. Although the 

transfer learning results are impressive, using regression and classification tasks together may 

not be a good choice in vehicle boundary detection, so the anchor- free method has been 

investigated. After a series of experiments, it was found that the YOLO method that uses the 

anchor-free network structure provides higher detection accuracy. In the first phase, the 

binary mask that assigns the bounding boxes is formed; in the second phase, classification is 

applied to the bounding box defined according to the selected anchor design as positive or 

negative, and finally, the losses in this mask production and classification stages are 

combined. In the new method, pixels whose center has a high response in regression task but 

is occluded will also receive a loss and can thus be distinguished. Therefore, it is aimed that 

the model better estimates the size of the vehicle even when the vehicle is occluded. A binary 

mask production loss and a classification loss are minimized depending on the results of 

regression and classification losses. By using the YOLO- V3 model with an anchor-free 

detection algorithm, the detection accuracy in Point of Interest (POI) detection has been 

inspected and trajectory planning has been supported with new data. This will definitively 

contribute to the continuation of the study with more reliable results. 

Two main tasks in object detection for autonomous vehicles are localization and recognition 

of specific environmental elements, in various weather or light conditions [18]. Driving 

assistance systems should detect various objects, obstacles, and roads or lanes to control the 

research vehicle parameters to avoid accidents, which means that object detection is important 

for perception systems [19]. In complex traffic scenarios, differen systems or sensors may offer 

complementary information, and their fusion opens new opportunities for object detection 

and recognition [20]. 

3.2. Semantic Segmentation 

Deep learning methods have been performing at a significantly improved level in semantic 

segmentation, much better than conventional image based classification methods, discussed 
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in detail in Subsection 2.1. so far and adopted by many self-driving car manufacturers in their 

main frame. As it is simply not possible to code a global definition of “lane” or “car”, machine 

must learn these features and the huge amount of data to train a system which learns arranged 

spatially on image is needed. Moreover, deep learning has become more common also in state 

universities for their master’s and PhD studies’ also, such kind of methods has been 

employing with common hardware like airborne laser scanners or smartphones and cameras 

[21]. 

An important question is how the sensors should be addressed in order to generate the 

described maps. How should corrections be possible to consider trees as infrastructure 

without an obstacle and how should these objects be correlated with different infrastructure 

objects (solar panels, roads, sidewalks)? In order to make this possible, it is necessary to design 

vehicle control units, production chain algorithm designs and road map control systems. 

These systems that provide operation in harmony and learning by machine will provide wires 

at many different points in the system from production to application [11]. 

3.3. Simultaneous Localization and Mapping (SLAM) 

Currently, deep-learning DSLAM is rapidly gaining traction in the computer vision 

community. DSLAM can be applied to fix the ambiguities in the estimation using semantics 

and also to avoid the handling of multiple modalities without losing even a single bit of 

information while projecting the feature onto the other modality. Therefore, DSLAM is an 

important research field in AV. Easy-to-implement open-source versions of DSLAM have 

been used to further improve upon DSLAM methods that extend their focus beyond the mere 

development of deep learning-based mapping and tracking and robustness handling, only for 

static environment, to a variety of diverse topics. These methods include dynamic SLAM (D-

SLAM), event denoising processing for event SLAM based on event cameras (EDP-E-SLAM) 

and deep reinforcement learning (DRL) for better representation and tracking [22] of the 

features in order to deal with the moving target of visual-inertial modeling. 

In autonomous vehicles (AVs) equipped with a camera or a camera array, visual Simultaneous 

Localization And Mapping (VI-SLAM) can be used to provide spatial information and scene 

understanding. Visual-inertial Simultaneous Localization And Mapping (VI-SLAM) systems 

can be used to fuse data from the on-board camera and IMU sensor to optimize the 

performance and accuracy [23]. They can efficiently provide pose estimates even in the 
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absence of GPS, and under occlusion, appearance changes, or lighting variations. The VI-

SLAM systems can support different tracking methods based on either batch optimization or 

smoother. The SLAM problem must be addressed by all AVs in order to understand the 

vehicle's environment and then construct a map of this environment to avoid obstacles, 

enhance localization, and improve mapping. When the sensors on board the vehicle observe 

different scenarios in different ways while driving on the same path, the compounding of the 

observations caused inaccuracy in estimation due to the non-observability of the scenario-

related features. The development of deep learning for SLAM has been referred to as 

“DSLAM,” and the variants of DSLAM have become increasingly popular in recent years. 

4. Challenges and Limitations of Deep Learning in Autonomous Vehicles 

Despite such advancements in the domain of deep learning-based AV systems, the domain 

still faces several challenges, some notable ones include the following [24]. Firstly, the AV 

domain is filled with different kinds of sensor as an intelligent component, used to register 

different parameters from the environment like lighting, velocity, data intensity, etc. 

Secondly, the major concern for deep learning-based AV is related to the subtleties of 

transferring the knowledge from static images to video sequence. Although huge research is 

being bent nowadays towards addressing the challenges and limitations of deep learning-

based AV, depth in many research is still required to complete the domain with intelligent 

deep learning-based AV sensors to realize vehicle AVs finally. 

The field of autonomous vehicles (AV) is undergoing a rapid expansion and is fueled by the 

advancement and widespread applications of deep learning techniques and frameworks [8]. 

Several application areas in AVs to harness deep learning for addressing the AV challenges 

have been reported in the literature [17].. Future of AV domains such as self-driving cars, 

drones, and ships; incorporate deep learning based computer vision and image processing 

techniques to understand the environment and perform accurate decision-making processes. 

In-detailed, current AV system introduces several challenges, including spatial perception 

through object detection, object tracking and multiple object detection, segmentation, instance 

segmentation, pedestrian and vehicle detection, 3D object tracking, visual odometry and map 

creation, etc. Deep neural networks have been receiving a lot of attraction for addressing and 

solving these aforementioned challenges. 

4.1. Data Annotation and Labeling 
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This observation can impact the cost of investment in inferences about false detections during 

manual data annotation. The average precision of detectors trained on algorithm-annotated 

data was stably better than those trained on human-annotated data for the three automotive 

data sets [25]. As per the domain expertise, it is possible to select the right combination of pre-

labeled and manually labeled data. For instance, as humans are the most vulnerable road 

users, from the perspective of safety, it can be said that humans need to verify the data 

collected for pedestrians and bicycles since these are the traffic participants who are most 

often killed or severely injured. 

Creating algorithmically annotated data can help us overcome the major bottleneck in the 

deployment of deep learning models in the automotive domain - the lack of manually labeled 

data [26]. For the automotive industry, where data collection is done by means of vehicle 

testing (particularly for safety-related systems), it is a common myth that we only need to 

have noise-free human-labeled data in order to train a good safety-related deep learning 

model. This chapter disproves that myth by quantitatively showing that a combination of 

human-annotated and algorithm-annotated data can improve the convolutional neural 

network-based detection models and also reduce the number of false positive detections. 

4.2. Adversarial Attacks 

To this system are combined several techniques. The first one is the integration of a Computer 

Vision and Light Detection And Ranging (LIDAR) multi-sensor fusion approach. The fusion 

of the data perceived by these two sensors allows the vehicle to detect a broader range of 

objects at different distances and with a 360-degree perception. 

In adversarial training, an explicit search for adversarial examples from adversarial 

neighborhood around the training samples is performed. When adversarial examples are 

found, the model is iteratively updated in order to minimize the perturbation introduced by 

the adversarial example and disimprove the corresponding attack to cause less harm to the 

model in the future [27]. 

Adversarial attacks are a space of methods and techniques used in various domains to craft 

an intentionally perturbed data sample, able to elicit a wrong prediction by the model during 

the inference phase [28]. Deep learning is particularly sensitive to these attacks, however, 

traditional defenses such as input data randomization and data structure regularization often 
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fail in the context of DNN-based perception. To mitigate adversarial attacks, a variety of 

countermeasures have been presented in literature, among which adversarial training and 

detection are widely considered the most promising [29]. 

4.3. Interpretable Models 

An interpretable deep model is capable of making it clear why it gives a certain prediction in 

addition to showing high-level performance. Various methods are used to achieve this, such 

as class activation maps (CAM) and CNN visualization. For each category in its predictions, 

especially convolutions in the last layers of the model are used to filter the features giving the 

highest score. Using a model like G-CAM results in understanding the generated feature maps 

of the model in a detailed and clear form. In this dark glow, although a classic model that can 

be effective is not used, a generic method should be employed instead to allow the creation of 

a unified interpretative model and to measure its performance on the existing dataset, rather 

than the direct creation of different positioning-based recognition models. Thus, the 

robustness of this model should be evaluated again in order to exhibit that the fusion of 

different recognition models will contribute to obtaining better performance [6]. 

Deep learning capabilities are increasing rapidly with the design of the latest technologies, 

especially models that can make use of an interpreter but provide predictive results that are 

not biased; i.e., the predictions coming from the model in hard situations, such as bad weather 

and twilights, where the lighting is low, are explicitly accounted for. Although the model used 

to recognize road lines, traffic signs, and the like may operate successfully, the results in 

problems such as sunset and snow should be interpreted accurately by the system, and the 

system should not report wrong results in these situations. These models to be developed 

must be both interpretable and must have high performance [4]. 

5. Deep Learning Architectures for Autonomous Vehicle Environment Understanding 

Architectures have been lately used in a variety of Automotive domains thanks to Deep 

Learning methodologies, Modules have different input shape characteristics and different 

components. Some prevention methodologies were built initially for classification of 

accidents. En Salakhutdinov and Hinton analyzed color images in 2007 and found that multi 

propulsion deep networks can efficiently collecters the important primitives of the data 

needed to accomplish the task of classification of objects [ref: 0079df4c-3b39-4447-afaa-
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e098b8ce30a1, ref: 00584b54-39e4-449f-b23d-13a747efd17f]. Nowadays, substantial 

achievements in object and scene detection, object segmentation and mapping have been 

made using Advanced Persistent Threat (APT). In addition, for a few Automotive Datasets 

such as Car Detection and Intersection Detection, few researchers have accomplished Driver 

Requirement Convolutional Neural Networks for two common architectures of lane 

detection. 

Deep Learning systems have had a significant impact on the automotive industry for various 

applications, such as computer vision for vehicle and lane detection, and more recently, they 

have been recognized to be essential also for enabling the development and expansion of 

autonomous driving. In fact, Deep Learning techniques have been employed to perform tasks 

such as analyzing and understanding the vehicle environment and improving safety in terms 

of emergency breaking and autonomous driving architectures [ref: e8b97841-a918-4dc3-98cd-

e0f374e486b3, ref: 00584b54-39e4-449f-b23d-13a747efd17f]. In the former, data processing has 

had its ground on the Automobiles domain, namely using computer vision for various tasks. 

They were initially used as detectors for pedestrians, vehicles, and lanes, and later for 

applications such as data collection, vehicle and license plate detection, lane detection, and 

environmental understanding. Most of the tasks in the two areas above have been recognized 

as hot topics in the customer behavior and vehicle safety domain. On the other hand, in 

progressive use for attractive cars with the same domain, namely social media analytics, 

analysis was able to learn long-term dependencies and predict future properties of crashes 

and user engagement. 

5.1. End-to-End Learning 

In this section, we introduce the user to learn about some of the most influential and 

prominent approaches and results on key subtopics and areas of future interest in DL for 

autonomous vehicles, MV mapping, and assistive technologies,ref: ae6cf3f1-8ea6-4935-9ad5-

64f0d7fc018d,ref: 5526d052-1549-441f-b450-1379df1b3e52]. This inventory can play a key role 

to foster innovation and spur the development of novel approaches in this area. Second, it sets 

the stage for addressing remaining open R&D challenges and open problems in both DL for 

MV and MV mapping by helping to understand the gaps in the field and spot areas of 

opportunities. At the same time, the inventory supports the analysis of specialisation and gaps 

in the current knowledge, to identify focuses for upcoming research in this domain. 
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Directly mapping perception inputs to control commands, this approach learns the policy of 

the autonomous system in an end-to-end manner [30]. It does not extract intermediate, 

semantic representations as a given object detection or lane following task, but rather it 

processes the raw image and maps it directly to a steering wheel angle or an acceleration 

command. Examples of end-to-end approaches we use in and impact the broader field of AVs 

are: lane-following approaches predating the repopularization of end-to-end methods and 

pioneering modern end-toend works such as [ref: 3e59c635-4426-49ed-ac21-74d03f4e116e,ref: 

ae6cf3f1-8ea6-4935-9ad5-64f0d7fc018d]. It is important to note that major open challenges and 

limitations exist for these systems including generalization to novel conditions, robustness to 

adversarial attack, unclear system reasoning, and safety validation. 

5.2. Feature Extraction and Fusion Networks 

Regarding sensor data, numerous options are available, such as stereo vision, LiDAR, radar, 

GPS, IMU and odometry data, and, in the more recent cases, camera and radar especially [4]. 

Voxel grid representations of LiDAR scans, with the 3D scene shaped into small three-

dimensional cubes, are established for high-resolution volumetric data. To overcome the 

limitations of fusing only two modalities, some benchmark datasets, including the nuScenes 

dataset, introduce trilogy semantic segmentation data. The nuScenes dataset aims to resolve 

perception and prediction tasks, while multi-modal fusion represents the most important 

learning aspect deeply investigated. The Distracted Driver Prediction challenge dataset 

presents a different kind of multi-modal fusion, where a single-image challenge asks for a 

comprehensive related description while driver distraction concurrent time data is 

available.ensive Introduction to Autonomous Vehicles and Their Classification with Policy 

Recommendations [31]. 

Deep learning has churned out impressive results in environmental perception and mapping 

tasks, generating in-put for decision-making systems in modern autonomous vehicle 

architectures and can be used for feature extraction. These types of algorithms allow for the 

design of feature extractors directly trained on raw sensor data, enhancing the overall 

robustness and adaptability of the system [32]. It might be useful to recall that the main 

difference between fully connected layers and convolutional layers is that the latter are 

characterized by a weight sharing mechanism, which endows the architecture with 

translational invariance properties. 
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6. Deep Learning Techniques for Mapping and Localization 

Commonly, this area refers to two main subproblems: on one hand, predicting what exists in 

the scene by means of categorizing and localizing the objects or instances being observed, 

usually called object-centric prediction or simply object detection, and on the other, 

additionally providing per-pixel semantic descriptions of the scene, which is called pixel-wise 

semantic segmentation. When a heavier integration between perception and mapping is 

targeted, the use of other techniques such as SLAM and Structure from Motion (SfM) for 

obtaining spatial alignment information can also be used to approach the simultaneous 

prediction of scene pixel semantics and metrically correct maps. In addition, deep 

homographies and view synthesis have recently been gaining research attention for their 

ability to leverage 3D maps and provide the capability to detect and reconstitute scene 

renderings in 3D-enabled contexts. Additionally, appearance-based place recognition and 

localization methods that view the problem of scene retrieval as a pure metric matching 

problem between images [33]. 

Possessing knowledge about the driving scene is one of the fundamental requirements for any 

autonomous driving system. A common approach for obtaining such knowledge is for 

vehicles to localize and map the 3D environment in which they operate. Traditionally, this 

would be done by using algorithms such as SLAM, which would provide a complete spatial 

representation of the scene and enable the vehicle to use such representations to localize itself 

[34]. However, while SLAM systems are able to generate maps of the environment as the robot 

moves through it, they are typically not able to perform high-level reasoning about the 

environment, e.g., identifying objects, individuals, or areas with some quality or property. 

Consequently, in order to leverage the data from such a mapping procedure to acquire data 

and information about the environment in the most efficient means possible, structural 

prediction is used, with high-level information about the environment being predicted in 

conjunction to the structure of the learned representations [8]. 

6.1. Graph Neural Networks 

Deeper representations in GNNs are assumed to capture adjacency information, but an 

empirical evaluation highlights that GNNs perform poorly on certain synthetic graph 

classification tasks, failing to recognize simple topological structures. These tasks, which can 

typically be solved by linear classifiers for grid-like structure networks, such as the formation 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  164 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 1 
Semi Annual Edition | Jan - June, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

of a particular bermuda triangle or distinguishing graphs with and without a certain type of 

bridge, are not recognized by GNNs. The thin slices observed in the model’s decision 

boundary and analysis in graph Fourier domain (the eigenvalues of the graph Laplacian 

matrix) suggest that GNNs learn low-level features abstracting only top-𝑑 Hop neighborhood 

information in the spectral domain. 

Graph neural networks (GNNs) are used for various tasks such as handling graph data in 

chemistry [35], social networks, transportation, images, 3D polygons, and other high-

dimensional data [36]. GNNs update graph node vector embeddings using message passing 

in graph convolution operations defined on the graph adjacency matrix. However, applying 

GNNs to graph classification tasks that can be trivially solved by simple classifiers with graph 

invariants as input grid features may be excessively aggressive [37]. For instance, the three-

center and four-center connected components on a 10 nodes graph are simple invariants that 

can trivially distinguish between graphs with and without a particular component. Training 

a GNN to perform a similar task requires discovering similar regularities unnecessarily due 

to the deep graph nature. 

6.2. Simultaneous Localization and Mapping (SLAM) 

2.2 Simultaneous localization and mapping (SLAM) and environment perception. SLAM is 

one of the most important foundational techniques for autonomous navigation in intelligent 

robots. SLAM has been considered as one of the fundamental problems and has captured 

much attention from researchers in mobile robotics in recent decades. The SLAM problem is 

essentially about building a map of the environment while simultaneously localizing a mobile 

robot within the map, including a robot’s structure motion and environment geometry. Over 

the last two decades, SLAM has continued to be one of the main research areas and develop 

rapidly. In its earlier days, Kalman Filters were often used in visual SLAM due to their 

robustness and ease of scalarization and linearization of dynamic systems. These classical 

SLAM methods were, how-ever, based on assuming visibility and static scenes. Recently, 

CRFs (Conditional Random Fields) have been popular and successful in building a dense 

representation of the observed environment and in different SLAM tasks. Collecting training 

data for these supervised methods is a difficult task. This issue puts forth the motivation of 

investigating unsupervised and self-supervised learning approaches. 
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Simultaneous localization and mapping (SLAM) technology surged in the last two decades, 

becoming one of the major research areas of autonomous exploration via robots. Between 2010 

and 2018, deep learning has made cutting-edge advancements across a wide range of 

applications [38]. After that, the combination of deep learning and SLAM emerged as a 

research hot-spot, while the fusion of these two areas has been referred to as deep SLAM [22]. 

As stated in, deep SLAM has been widely applied in a variety of areas. In this section, our 

main focus is on SLAM using RGB-D sensors to generate dense maps of their surroundings. 

Therefore, we mainly list papers related to RGB-D SLAM. There are some papers that 

pioneered the utilization of deep learning in monocular visual SLAM to recover a class of 

geometrical information (depth, normal, odometry) [39]. 

7. Data Collection and Preprocessing for Deep Learning in Autonomous Vehicles 

It is known that image processing and interpretation in high-dimensional data types such as 

RGB-D and other vision data are very challenging tasks. Semantic segmentation (SS) is the 

most accurate type of object recognition in real-time. In this study, the image-based 

environment recognition system is aimed to be trained accurately, effectively, in a few time. 

Semantic segmentation has been chosen as the environment perception round on the real 

system and a well-known birdseye view creation process are accompanied for showing where 

objects are independently of vehicle’s current heading. Creating and labeling the best suit size 

of dataset could provide great convenience from the perception terminal to the decision-

making stage in autonomous systems. Detecting all critical and necessary objects in urban 

scenes with all possible different weather and lighting conditions, various times of the day, 

under non-uniform weather conditions, representing different textures and sizes of all-sided 

detailed data in a well-prepared dataset is essential for creating a faultless deep learning 

model. For this aim, designing, collecting, and labelling the high-quality dataset is a 

requirement to easily increase the operating performance level, as it has occurred in 

gluconeroamer research. 

[40] Autonomous vehicles have been an object of great interest of researchers for about two 

decades, enabling both standard and luxury vehicles. Deep neural networks, especially the 

learning models which can create high-performance level systems, facilitate large 

improvements in this process. The focus of this paper is the development of an operating 

autonomous vehicle powered by deep learning models, as well as the proposal of a data 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  166 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 1 
Semi Annual Edition | Jan - June, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

collection and labelling methodology. There are no similar multi-sensor vision-based vehicle 

experiments in the literature showing the data collection and labelling method in a 

methodological way. In this work, robot operation system (ROS) was used as a testbed, 

together with a Gazebo-based simulator, a remote controlled real vehicle, a Velodyne LiDAR 

sensor, a ZED stereo camera, and a Raspberry Pi 4 single board computer. Regarding the robot 

testbed, all of the component and sensor types (depth camera, RGB camera, LiDAR sensor, 

other sensors) are suitable. However, the sensor and camera sets are not experimental, and 

experimental setups should be prepared according to the system’s requirements.[11] 

Autonomous vehicles use surrounding sensors for environment recognition. Autonomous 

vehicles have various sensors in smart transportation systems. Since the sensors of the 

autonomous vehicles can be categorized into light detection and ranging (LiDAR), computer 

vision, radar, and global positioning system (GPS)/inertial measurement unit (IMU) systems, 

sensor fusion strategy is studied in various methods [17]. High-accuracy data obtained by 

sensors in autonomous vehicles are used for decision making, path planning, control, and 

environment recognition algorithm stages. The vision-based systems utilize the computer 

vision algorithms that process the RGB (Red, Green, Blue) images. Converting these images 

into object detection networks, semantic segmentation networks and so on, the autonomous 

vehicle could become familiar with predicting driving the road, comparing the learned most 

recent traffic laws and real one. The vision-based systems have non-contact, real-time, and 

cost-effective work manners. 

7.1. Sensor Fusion 

In MMFNv1, a monocular camera and the multisensor fusions of SPC candidate detection and 

depth-information guided energy potential high-definition (HD) map activations were used 

to complete driving tasks. In MMFNv2, dynamic fusion scopes for multisensors were 

introduced so that SPC detection results were as structurally representative as possible at 

different approaches. In MMFNv3, radar detection, HD-map extraction, and motion pattern 

data can perform driving tasks based solely on radar data, HD-map constraints, and the 

driver’s control with LIDAR available. 3D-LIDAR-guided fusion was used in the updated 

version to get better results. Camera target tracking was combined with other sensor 

detections in MMFNv4, which was more in line with the actual situation speedometer output 

to enhance the target information. LIDAR filtered RGB image semantics provided better 

predictions. These targets were refined with HD Nav how-tos from the HD map. It can be 
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seen from the figures that each function added can improve response results at different 

levels. 

Most current works develop individual models for each sensor and then combine the 

perceptual output in the application layer. The advantages of the camera, such as the accurate 

position and high definition detailed color information, greatly help in refining the output of 

other sensors. Multi-sensor fusion models have been used in many modality fusion networks 

as the perception module backbone [41]. This improves their efficiency and enables them to 

achieve better performance. A Multi-camera–Fusion (MCF) net was used with individual 

models for different camera configurations and a fusion model for these modals, but stereo 

camera pairs suffer from a narrow effective detection range. Multi-Modal-Fusion (MMF) 

networks combined the perception outputs of the mono camera, Radar, Lidar, and related 

maps. Stereo- Pixel-Fusion (SPF) networks can directly improve the performance by using the 

depth information from the LIDAR brought into the model at the same time that monocular 

cameras were considered. 

Sensor fusion is crucial for the accurate perception of the environment and objects for 

intelligent vehicles [42]. Different types of sensors, like LIDAR, camera, and radar, can provide 

rich information about the vehicle’s surroundings. Camera sensors mainly leverage image 

processing and plane stereovision to detect objects, but their performance is strongly affected 

by weather conditions. LIDAR sensors provide accurate depth and 3D information but are 

expensive, bulky, and lack color and texture information, which limits their ability to detect 

objects. RADAR uses electromagnetic waves with long wavelengths (mm-wave) that are in 

great demand to detect distance and speed, which means it is able to work during different 

environmental conditions, including darkness, rain, fog, and snow, but RADAR sensors only 

reflect the objects in the surrounding areas and are generally used to provide supplemental 

information about the LIDAR and camera. 

7.2. Data Augmentation 

In automated nuclear material identification and verification, besides flipping and rotations, 

number 2, which is often confused with 1, 7, 5 and their flips (number zero is often confused 

with 8, 3, and their flips). With existing number 2 are flipped at four possible sides and for the 

capital character O, circulating the shape of it at different angles and then using the data that 

matched the real location, they construct their own dataset with good correctness. These are 
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applied in different places in multiple applications, including document images, biomedical 

images, and various sensors, as well as multiple domains from the test set to the training set 

in a balanced way, while the unknown samples in their domain, such as verification dataset, 

should not be augmented. 

Data augmentation has impacted a high number of fields, ranging from medical [43] to 

mechanical engineering. In dermatology research and practical life, contrast change is usually 

utilized for hiding skin and lesion shapes to mimic different patients’ circumstances [44]. MR 

brain images flipping is performed for generating images from different directions [45]. Data 

augmentation prevents the model from learning irrelevant or trivial patterns and 

consequently makes the model more robust and discriminative towards individual 

overfitting. Here, we rotated and flipped the 2D images at different angles and by different 

sides increment. The main reason for performing so many synthetic processes is to have an 

equal number of augmented data for each class and an approximate number increasing of all 

augmented classes at the end of the surgery. Therefore, say the challenge was about having 

all Gaussian and biopsy points in the same position in all images, so the classifiers can easily 

find decision boundaries. To solve this challenge, with c0 is the original input matrix, we 

make, c1=c0, c2= flip (c0, hori), c3=flip (c0, verti), c4=flip (c2, verti), c5=flip (c2, hori), c6=flip 

(c3, hori), and c7=flip (c3, verti). These steps generate 28 images for each patient for the 

training condition. By using all augmented data for training, the model will be trained less 

biased. Flipping, the adject means that we added some remaining random background pixels 

around the real DAF layer. Also, finally, XY and YX structures are the same from the outline 

view and thus the flipped augmented images are still possible and correspond to some 

realistic cell types. 

8. Evaluation Metrics for Autonomous Vehicle Environment Understanding 

Typically, environmental understanding is evaluated by multiple metrics, evaluated on 

different datasets, representative of different real-world scenarios and conditions [6]. Most of 

the general-purpose recognition datasets can be used for evaluation. For instance, the very 

popular Cityscapes dataset allows easy evaluation, since it contains a subset with accurately 

recorded ground truth data. Custom datasets have been proposed, such as the ApolloScape 

dataset, that will test the implementation of Chinese road standards. Another approach for 

evaluating environmental understanding is to simulate the vehicle’s sensor readings based on 
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ground truth. A method based on this principal is proposed by using photo-realistic data as 

input for the AV system. A third approach is to employ metrics for assessing environment 

understanding from physical evaluation like depth or flow estimation. 

A fundamental requirement for autonomous vehicles (AVs) centered on real-world operation 

and adoption by users is to have high performance in understanding their environment in 

terms of perception and understanding of interactions of surrounding agents. Metrics should 

be defined to evaluate and quantify the environment understanding capability of an AV [46]. 

The evaluation should be realistic accounting for different scenarios and weather conditions 

and occur in the real world or using sensors that match as closely as possible those of AVs’ 

hardware. 

8.1. Intersection over Union (IoU) 

But in instances when identifying the object is also related to the orientation of an object, and 

multiple classification and detection tasks must be expected. Then, more specialized criteria 

and metrics measurements are used. For example, in the case of the instance segmentation or 

semantic segmentation problem, which kind of deals with decomposing multiple objects 

within the dataset and also in class-specific metrics evaluations [47]. There, another criterion 

is used for class-specific statistics results across classes. This is typically the most important 

aspect of well-performing recognition problems such as autonomous driving, the recognition 

of traffic signs, the recognition of other vehicles, traffic signals, pedestrians or cyclists, just to 

name some few of the necessary entities. The metric that typically is used to calculate the share 

of well-detected pixels in a segmentation volume is called mean Intersection over Union 

(mIoU). 

Intersection over Union (IoU) is a widely used performance metric in the field of object 

detection and segmentation [ref: 02c50dad-ae48-4391-9980-02d6b069a0db, 685c6363-d66c-

46a6-b6f7-5cb5b7b5833d]. It is essentially the measure of how much two bounding box 

definitions overlap one another. If a value of 1 is achieved, it implies an exact overlap between 

the predicted bounding box and the ground truth, while 0 represents no overlap at all. 

Precision (also known as Intersection over Prediction, IoP) and Recall (Intersection over 

Unison, IoU) metrics are based on the IoU. mAP (mean Average Precision) is another popular 

result evaluation metric. The key distinction here is that bounding box IoU calculates the area 

a rectangle on a plane, (whether in 2D object detection or in 3D object detection), therefore is 
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also applicable to situations where only positioning is important and individuals do not care 

about the structure of the objects as such. 

8.2. Mean Average Precision (mAP) 

mAP, also known as the area under the precision recall curve (AUC-PR), is calculated for 

Object detection models which generally outputs the probability confidence of the ground 

truth object class. This model measures the likelihood of the prediction of the object. Where 

the mAP is generally larger with a larger IoU value, 0.5 is the value which is taken into account 

before evaluating the mAPs since it is the cutoff point for considering predictions to be true. 

Associated with false positives and false negatives are predictions that incorrectly match or 

make the classification. As the value of the intersection over union increases the true positives 

and false positives decrease, mAP at larger IoU values increases when predictions are less 

likely to be wrong and the model becomes more sensitize. Bounding box models mAP@0.5 

denotes the mean average precision using the intersection over union (IoU) threshold of 0.5. 

Low precision values at 0.9 level and significantly high precision values at 0.3 level indicate 

under and over segmentation, respectively, of the annotated instances. Instance segmentation 

models can often cope with under-segmentation since the network learns to recognize the 

individual object both from its affinities and contours. mAP@0.5:0.95 (all points on the AP 

curve) or mAP@0.75 (single point) can cope with over-segmentation better as it takes into 

account the multiple instances that are present in the same. The precision is higher at 0.9 IoU 

levels due to more finely localized instance choices. Where AP@0.5 is high, it is possible to 

over segment since the contours are hazy and multiple object fragments are included. Large 

variation can be introduced on the mAP@0.5:0.95 when the blue noise mask is very thin and 

the affinity prediction is not very good, causing the AP@0.75 to be much lower than the 

AP@0.5 value in semantic segmentation models Estimated mean averages of box- level Like 

the bounding box means, the average precision (AP-IoU @ 0.5: 0.95) are shown to depicts 

greater under segmentation and over-segmentation behavior of the growing box models. 

Accuracy is one of the most important factors for an effective machine learning model, which 

can be measured using Mean Average Precision or mAP [48]. While there are many other 

measures to evaluate the performance of an object detection model, mAP and acccuracy are 

two of the most important. mAP with respect to IoUs of 50% (the mAP@half) or to a varying 

IoU range (the COCO-style mAP) are often used for the evaluation of an object detection 
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model. While mAP@half is a better measure of precision, mAP50,60,70,…95, which is the 

average of the mAP for thisistinct IoU thresholds, is a better indicator of the efficacy of the 

learning for semantic segmentation. Some of the other common measures used to evaluate 

performance of object detection models are bounding box accuracies such as IOU@50% and 

the prediction accuracy with top-k proposals [49]. Jaccard index, precision, recall, and F1 score 

are other metrics that are also used for measuring model performance. Precission is a measure 

of how much relevant instances among all detected instances. Recall is a measure how many 

of the relevant instances have been retrieved over the total amount of relevant instances. F1 

score denotes the balance between the precision and recall and Jaccard index is the intersection 

over union of ground truth and the predicted object. Accuracy denotes the sum of true 

positive and true negative instances among all instances [50]. The following is a discussion 

about bounding box, semantic segmentation, and instance segmentation models in the context 

of their ability to predict intersections over union (IoU) with the mAP measure of accuracy. 

9. Ethical and Legal Implications of Deep Learning in Autonomous Vehicles 

Moreover, road authorities in several countries are moving to enhance the road infrastructure 

for V2X applications and CAV powered by providing standardized data containers and 

exchanges which improve communication and localization capabilities of the V2X underbuilt 

services. Specifically, in Sweden data exchange format for the traffic control systems and the 

real-time road condition (weather and surface state) data will be based on open standard 

collective administration and private deployment control information. As a conclusion, the 

rigid and adaptive architectures which allow us to handle different operational cases 

effectively, require large number of labeled samples, and as the intersection of operational 

cases increases the training set becomes less scalable in practice. It would be good to 

investigate and propose a model to leverage reusable data for scenario-specific representation 

learning in the ethical design phase of CAV [8]. 

Legal framework defined in the running document REGULATION (EU) 2019/2144 OF THE 

EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 November 2019 on type-

approval of electric buses and coaches with regard to advanced driver assistance system 

(ADAS), automated equipment, and autonomous vehicle technologies includes specific 

requirements for the architectural limits of the systems, the testing requirements from both 

technological and non-technological perspectives, i.e., impact of the technology systems over 
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the non-technological issues like accident chain and reasoning, ethics and liability 

management in automated driving applications is anticipated to test ADAS and automated 

vehicle systems in different topological subjects of data on an extensive set of scenarios with 

minimal and maximal architectural restrictions to assess that technology’s/rule’s compliance 

with the safety documentation [4]. 

Deep learning architectures have demonstrated unprecedented performance improvements 

in various perception and decision-making tasks which could be exploited to complement the 

key sensing and decisional capabilities of autonomous vehicles and improve their 

performance under complex driving scenarios. The employment of such data-driven 

approaches has the risk of limiting system’s operability within limited number of scenarios, 

as input data distribution of the employed prior designs, e.g., other participants in the traffic, 

infrastructure, etc., may significantly differ during the runtime from what the machine has 

been trained on [2]. 

9.1. Safety and Liability Issues 

There are several ethical and security issues in autonomous machine learning (ML) driving 

that need to be resolved within 10–15 years. Separate ethical issues include misleading 

assessments, questions concerning liability, unpredictable system behavior, safety measures, 

or technical and technological limitations and constraints. Due to its dependencies and 

associated safety concerns, we will not verify the use of advanced driver assistant systems and 

the data dependence of world model capabilities for safe deployment through ethical hacking 

and adversarial examples. Currently, industry-wide approaches and a separate common 

understanding of the realization must be created. This is essential to enable healthy 

commercialization and implementation of complex and highly flexible combinations of driver 

use and support features [51]. 

Deploying advanced deep learning models in commercial-grade autonomous driving systems 

and electronic driver assistance systems involve several technological and ethical challenges. 

Although Deep Learning (DL) has shown remarkable performance for many years in 

computer vision, the optimal model architecture, feature extraction, data representation, high-

level understanding, cross-sensor fusion, and smooth sensor data fusion for traffic safety and 

efficiency have not been fully established [52]. Moreover, all companies involved in these 

technologies continuously collect data from the real world. However, the gradual shift from 
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driving policy and procedure enhancements to autonomous driving has introduced several 

serious open problems, including uncertainty, liability, security measures, vehicle handover 

strategies, reactions against accidents, deep decision-making dynamics, and even actions 

against consequences [53]. To resolve these complex yet highly relevant issues, they must take 

into account innovations occurring through communications and software application-like 

updates for the advanced driver assistant systems and mapping localization and perception, 

sensor improvements, and technological and legal limitations in autonomous driving. 

9.2. Privacy Concerns 

Another issue of privacy that has critics concerned is whether AIs like the LLMs will use the 

data and personally identifiable information (PII) they acquire to protect the privacy and 

rights of others [54]. Will AIs acquire means of processing the data of individuals, then use 

that knowledge to manipulate individuals? Questions about AI ethics, fairness, bias, 

discrimination, and privacy are rapidly emerging. Yet to manage new ethical challenges 

posed by LLMs, society requires some philosophies, regulations, and standards. Collectively, 

this paper critically discusses the prudent use of these models so that society can find a 

responsible way to operate AI-based research safely, ethically, and with due respect for the 

privacy and dignity of individuals. 

Deep learning has been widely used in intelligent autonomous systems towards their optimal 

perception, understanding and responsive actions [17]. In particular, sensors play a crucial 

role in spatial awareness, understanding the environment, and creating accurate machine 

learning models that offer consistent results and manage interferences better [4]. Over the 

years, researchers have extensively worked in understanding various intelligent sensor-based 

systems, deep learning algorithms, and techniques working collaboratively for their 

improvement. In this systematic review, the authors respond to the advancements in deep 

learning sensor fusion algorithms to understand the diversity and applicability of approaches 

within the context of intelligent sensor-based systems. Various applications such as robot 

systems, condition monitoring systems, transportation systems, healthcare systems, energy-

efficient machine learning methods, and environmental awareness systems are taken into 

account for understanding the diverse applications of intelligent sensor-based systems. 

10. Future Directions and Emerging Trends in Deep Learning for Autonomous Vehicles 
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Although deep learning methods such as convolutional and recurrent neural networks have 

been successfully bridging the gap for the edge, the architectures for detecting, tracking, and 

understanding objects around the vehicle are still evolving rapidly [8]. The autonomous 

driving stack, especially the perception and reasoning sections, is an enabler for processing 

vehicle data into actionable decisions but it needs the fusion of multiple lighter or heavy 

weight deep learning architectures to see through weather conditions, appearance variations, 

motion dynamics, and model unobservability biases. Combining different networks and 

successful multiobjective optimization and control strategies will be an imperative in 

increasing understanding and explaining increasing complexity in the coming years. 

A main challenge in efficiently and accurately deploying deep learning models for 

autonomous vehicle functionalities is the relatively high computational cost of the algorithms 

[55]. Especially for modern computer vision tasks such as object detection and instance 

segmentation of today’s data-hungry visual neural networks drastically require more 

processing power to be trained and/or tested properly [56]. Emerging High-Performance 

Computing (HPC) platforms featuring new technologies such as new-style Graphics 

Processor Units (GPU) and novel neural network architectures suitable for efficient dedicated 

electronic circuits are helping autonomous vehicle algorithms to become faster, more efficient 

and equipped with even more advanced predictions. 

10.1. Self-Supervised Learning 

N-tuple self-supervised learning: A single-image direction model is used for road texture 

classification in. Image datasets are used in training and testing. GitHub-inspired internet 

(databases) are collected using the word “peek” for testing. In the first study, the results 

showed that image-based classifiers could be used directly. In the competition itself, simple 

classifiers were used. In the second study, more powerful road classifiers are used. It is a large, 

realistic, installation made using artificial images. Maps derived from satellite images are 

used, and less realistic images and various parameters are used. Using generated images on 

more realistic tasks than the previous approach will tell us more about transferred capacity. 

Common use, permuted (n-Tuple) MNIST is used. Despite the low transfer success observed 

in the study, the approach is interesting to us. 

Self-Supervised Learning [9] 
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Improve the safety and reliability of autonomous vehicles in a detailed and dynamic 

environment is challenging. It attracts more attention to the subject of learning maps in 

autonomous vehicles because of its significant advantages. The artificial neural network is a 

powerful tool for generating maps from sensory data. The common ways for learning maps 

are supervised learning methods and using vehicle state while learning. We have tried to 

answer the question of how accurately we can learn our environment with only our vehicle 

sensory data. 

Introduction [57] 

10.2. Few-Shot Learning 

Instead of predicting key points, A2RL [17] completes the remaining and possibly occluded 

part of the objects based on the information of the few annotated estimates, i.e., the task-

defining coefficients. In this way, A2RL intends to incrementally establish patterns in the 

fitting targets, and instead of predicting the remaining part of the object’s map from a single 

observation, the approach build the demand map based on the overall distribution of the key 

points. Another major work extending few-shot learning to monocular depth estimation is 

FSD [58]. FSD first uses high-level feature matching to establish point correspondences 

between the few labeled and the unlabeled data, and then combines the technique with 

geometric consistency metric for better depth predictions, which facilitates learning to adapt 

to target scenes and dealing with task-specific complex spatial configurations. FSD has further 

improved the generalization performance and stable training in challenging target scenarios 

compared with FINet by only minimizing the error of unlabeled depth through one-shot 

learning, so that the few labeled data can guide the feature learning effectively. 

Acknowledging that the real modality gap between a source domain and a target domain can 

degrade the performance, recent works have proposed holistic domain adaptation learning, 

where the input sensor data from the source domain are transformed as the target data before 

the particular task learning, such as steering prediction or depth estimation. In these works, 

images from the target domain are leveraged to guide domain adaptation. Inspired by few-

shot learning, source data can be labeled with one-shot or zero-shot annotations, and the side 

information can be diluted to incorporate more challenging scenarios. S-DCIL [59] proposed 

to perform unsupervised domain adaptation for monocular depth estimation in real scenarios, 

where the source camera and the target camera are different. Different from the previously-
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mentioned static calibration errors, their work focuses on the temporal drift of an accurate 

relative camera pose suffered by refusing to re-calibrate the camera intrinsic and extrinsics. 

They have utilized one-shot depth annotations to guide the target domain adaptation. 
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