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1. Introduction 

The robustness of the AV should be guaranteed at multiple levels: (i) at the isolated level of a 

particular AV in response to cryptic communications from sensors and actuators and against 

stealthy attacks of methods; (ii) at the level of all distributed components (collaborative) of the 

AV fleet (including the remote operator or AV operational services) against threats that are 

capable of affecting the global functionality of the system of the AVs. It is clear that the security 

and safety of the AV fleet becomes crucial in the event of the verification of infrastructure-

grade services (including human safety and private data security). The deployment and 

efficient functioning of the installations of the AV fleet are likely to occur through the 

establishment of future cooperative testbeds for safety assessment aimed at creating a 

completely acceptable technology by the corresponding standards (e.g., necessary conditions 

of the ISO 26262:2018 and the language of the SOTIF standard: preliminary work of the 

ISO/PAS 21448). 

The evolution of information and communication technologies (ICT) has resulted in a 

significant increase in the deployment of cyber-physical systems (CPS) in various application 

domains, such as smart grids, infrastructure management systems, and many others. Among 

the most popular CPS are the so-called vehicles with various degrees of autonomy (or 

automated vehicles, AV). The latter include conventional vehicles with different advanced 

driver-assistance systems (ADAS), as well as fully autonomous vehicles (fAV). The proper 

operation of AV requires the coordination of various subsystems and microservices, such as 

localization, perception, and artificial intelligence (AI) for purposes of data fusion, prediction, 
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planning, motion control, and external interfaces. Due to the variety and complexity of 

operational conditions, AV may be subjected to severe security and safety threats arising from 

different levels of adversarial intrusion (e.g., from jamming, spoofing, man-in-the-middle, 

false data injection, etc.) to the information methodologies and architectures, to the deviation 

from the expected vehicle operational profile from a software engineering perspective. 

1.1. Background and Motivation 

With recognition of these high-level security challenges, what approaches will effectively 

assist nations to develop the necessary capabilities that enable vehicle agencies to trust that 

their assets are not compromised? This chapter provides the framework for solutions that 

directly address system reliability and trust through enhanced federated learning and 

distributed sensing algorithms. 

Potential adversaries could exploit system vulnerabilities to intentionally degrade 

performance, set suboptimal operating conditions, or intentionally disrupt critical 

infrastructure for political, economic, and social goals. In the context of security, 

considerations of defense, resilience, and safety were explicitly included as part of the 

intelligent connected vehicles (ICV) investment title found in the Fixing America's Surface 

Transportation Act, enacted into law in December 2015. That bill formally recognized the need 

to investigate and design novel strategies to robustly evolve vehicle systems that can build 

and operate in networked coalitions. 

Connected, autonomous vehicles of the future are anticipated to evolve into intelligent and 

cooperative systems capable of understanding the physical and digital world around them. 

Achieving this vision demands a spectrum of capabilities including sophisticated sensors, 

distributed computing devices, robust digital communication, and vehicle fleets with shared 

information about their environment, state, and operating policies. Each of these capabilities 

and their hardware and software constituents can be susceptible to diverse risks and failures 

that destabilize performance at inopportune moments. 

1.2. Research Objectives 

Our goals are intertwined to address the challenges and threats restricted to the vehicle 

networks and the performance is measured with suitable multi-performance metrics. The 

human-in-the-loop core concept suggests that humans should be retained in the decision loop 

in some manner pertinent to the decision making context. Our validation of the localized 
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threat detection analysis and the collision risk estimation methods involves the subject matter 

experts and other experts, ensuring that human safety concerns take precedence over 

automation with limited good behavior. Finally, we hope to unravel some of the mysteries 

surrounding "what is really the best approach to reaching optimal hierarchical decision 

making and information fusion?" This will contribute to answering questions such as the level 

of trust and confidence in machine decision making and automation. 

The primary objectives in this research study are as follows: Scalable and efficient localized 

threat detection: Develop methodology and design threat detection approaches in the vehicle 

networks, such that the overhead on the computational nodes is controlled, and the localized 

environment perception and analysis for threat detection is achieved with high performance. 

Federated learning approaches: Converge the localized perception and analysis efforts in the 

vehicle network in a distributed manner using federated learning approaches. The need for 

centralized high-capacity processing, collection and sharing of training and testing data are 

avoided through this approach. The model weight exchange strategy is made robust to 

privacy preservation and cybersecurity threats in the vehicle networks. Reliability and 

robustness: To design localized environment perception and analysis using multi-sensory 

inputs that lead to robust recognition, robust diagnostic, error-free decision, and has 

mechanisms that prevent adversarial disruptions. Quantify collision risk: Quantify the 

collision risk based on the short and long term recognition and diagnostic uncertainties. Our 

research will uncover the complex relationships between the risk factors and discover the 

kinds of situations each of them is sensitized to. 

1.3. Overview of Autonomous Vehicle Networks 

The AVs are allowed to obtain indirect global threat state information while having no access 

to the local threat states of others. Such indirect global threat states will be requested and used 

in the training, and the AVs will eventually know the global state information from a detection 

strategy, thus avoiding privacy leaks. 

AVs should make decisions based on local data they collect in real-time, and the collaborative 

system is acting upon the decisions made by all participants, thus making it a type of federated 

learning system. Four characteristics of federated learning advantageously adapt the 

constrained communication, shifting distribution, and verification of local data required by 
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AV networks, and to realize the collaborative threat detection and control in a practical 

manner. 

Autonomous vehicles (AVs) have been an area of interest for years due to their convenience 

and attractiveness. The majority of existing research has explored driving safety, and the 

proposed technologies are currently being developed to turn the features provided by AVs 

into reality. Nonetheless, such potential features raise several nonfunctional requirements for 

the collaborative system in which AVs collaboratively detect and control potential threats, 

and demand concrete implementation realization. 

2. Foundations of Federated Learning 

Distributed Optimization. We consider the following problem in distributed optimization: 

minimize the function f(w) in such a way that f(w) is "close" to the minimum of some "target" 

function g(w*), where w are the parameters, w* is the optimum, and the functions f and g are 

IP twice continuously differentiable. To minimize f(w), we can utilize either first-order 

optimization and approximation of g(w*) or second-order optimization. The updates in 

distributed optimization at each machine t have the form wt+1 = wt - ηtst, where st is the 

search direction and ηt is the step size or learning rate. The search direction can be 

deterministic or randomly generated from an NHIP distribution. For example, in Distributed 

Stochastic Average Gradient (DSAG), st includes the gradient at the current time t and the 

algebraic average of the gradients in the ensemble at the last iteration considered. 

We now provide foundational knowledge required to understand Federated Learning (FL). 

In particular, we discuss its relationship with Distributed Machine Learning (DML). This 

overview sets the stage for the subsequent sections. 

2.1. Machine Learning Basics 

where D^{train} contains m input-label pairs. A fundamental tradeoff in ML is to ensure h ≈ 

f and reducing the complexity of model H to prevent overfitting and maximizing 

generalization, which would prevent reduction in test error. 

\[ \hat z = \underset{z \epsilon Z}{\operatorname{argmin}} L(w; D^{train}) \] 

Formally, for any defined cost function, L, and real learning task, with enough samples drawn 

from the underlying probability distribution, it is generally impossible to find the best 
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hypothesis since we cannot draw all the samples of space Z. Hence, learning is approximated 

by minimizing the training error, empirical risk minimization (ERM), which defines the 

training error based on the available data. 

where D contains input-label pairs, which is drawn from probability distribution P(X, Y), and 

Z contains the proposed output labels. 

\[ \hat z = \underset{z \epsilon Z}{\operatorname{argmin}} L(w; D) \] 

Suppose we have a dataset, D, with input vectors, x, and corresponding labels, y. A learning 

algorithm typically tries to fit a mapping, h: x → y (h ≈ f). For a supervised algorithm, the 

mapping g which best matches the data can be thought of as a function in a hypothesis space, 

H, which maps the input vector to desired output. We often define some cost function, L: H 

→ R, which measures how well the function in H agrees with the given dataset. We then 

search for some hypothesis, h ∈ H, that minimizes L. 

2.2. Decentralized Learning 

Furthermore, we will introduce Federated Averaging with Local Training (FALT) and 

Cooperative Learning with Delay (CLD) approaches dedicated to the dynamic, asynchronous, 

sample-starved scenarios in VCS. FALT equips with hyperparameters in federated learning 

and local training to coordinate between the optimization process under local data sparsity 

and slow alternations. Then, the optimization problem of seeking an agreement is formulated 

and reformulated. To solve such a non-convex, non-smooth, and large-scale optimization 

problem by the nature of 3D VCS, we make joint hierarchical feature learning and 

architectural parameter synchronization tasks be decomposed into several hierarchical 

coordination. These coordination tasks are reformulated by the combination of sync-delay 

bound constraint analysis and iterative solution strategies by which they could be transferred 

into several suboptimization problems with respect to each sample-pairing across different 

vehicles. 

Decentralized learning, concurrently, is carried out in more than one local model and aims to 

find a consensus among the local models to achieve a global model. Unlike federated learning, 

decentralized learning can be carried out without the help of a central server. However, this 

is not the focus of our study. Our paper focuses on decentralized machine learning approaches 

in a partially connected network environment, where each vehicle learns from local data and 
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models with some neighboring vehicles, and the neighboring vehicle set may temporally or 

spatially change. The training information asymmetry caused by different local data 

distributions among different vehicles and the communication delay due to the periphrastic 

updating mechanism could hinder their adaptation. In order to let vehicles with different local 

training data reach an agreement without sharing explicit information, we will make a 

decentralized simulation stack based on a fully connected neural network architecture to carry 

out decentralized hierarchical feature learning and architectural parameter synchronization 

based on a distributed concurrent simulation framework. 

2.3. Privacy-Preserving Techniques 

There are generally two classes of data privacy. The first class of privacy protection techniques 

leverages semi-trusted aggregation by using encryption schemes to at least prevent an entity 

from learning the contents of individual data until the completion of the aggregation. The 

second class of privacy-protection techniques are fully trusted techniques that leverage secure 

multi-party computation (MPC) to allow joint and distributed computations among the 

collaborating entities with the goal of keeping all the contents of their private data completely 

private from anyone without proper access. While the first class of techniques balances the 

trade-off between privacy and complexity much better, the second class of techniques 

presents a much better interpretation of privacy by treating data aggregation as private 

operations among all entities during the whole process. In this work, we consider MPC-based 

techniques for privacy-preserving multi-entity detection models. 

Secure and privacy-preserving methods for multi-party data aggregation have been long 

studied in the context of data mining and statistics. In addition to providing security against 

adversarial models, such as semi-honest or malicious models, some approaches also consider 

privacy protection by not revealing any sensitive data of individual entities participating in 

data aggregation. In this study, we are particularly interested in privacy-preserving 

techniques that can be used in the context of collaborative and distributed threat detection in 

autonomous vehicle networks. 

3. Threat Detection in Autonomous Vehicle Networks 

A salient aspect of AV cybersecurity is the ability to detect and collaboratively address cyber 

threats likely to impact one or multiple AVs. Here, privacy-sensitive threat detection becomes 

crucial to protecting the safety integrity of AVs, while also mitigating the viability of stealthy 
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abuse in practice. For instance, a vehicle can contain a stealthy attack node that can tamper 

with the data used for collaborative sensing of imminent traffic hazards or situations of co-

threatening vehicles, causing one or both vehicles to collide with one another, thereby causing 

harm to their passengers or other bystanders nearby. Thus, due to vehicle deployments, the 

forms of data and operations conducted in edge computing, and the possible adversarial 

nodes and stealthy fault models, the threats connected to collaborative threat detection in the 

context of data and system security carry specific privacy implications. At the same time, these 

are the types of initiatives that the automotive industry is undertaking to ensure the safety 

and privacy preservation of smart transportation systems. 

There are many sources of and reasons for concern about the security of autonomous vehicle 

systems. Both directly and indirectly, AVs handle sensitive data, including personally 

identifiable information (PII) about their passengers and others in the vicinity. To that end, 

cyber criminals could exploit and exfiltrate data associated with passengers and the vehicle 

platform itself to potentially attack not only individuals or organizations but also nearby 

vehicles and pedestrians. Additional vulnerabilities include the system interfaces connecting 

AVs to the broader transportation ecosystem, including cellular networks for infotainment, 

updates, vehicle-to-everything (V2X) coordination, and fleet management. These networks 

are exposed to evolving threat landscapes and can be attacked through vehicle stealthy 

misbehavior such as sniffing (e.g., eavesdropping for geolocational tracking), jamming (e.g., 

disabling sensors to induce disengagement or other unsafe actions), or replaying misleading 

data or injecting fabricated messages into the system. 

3.1. Challenges and Requirements 

Several paradigms have been proposed to execute machine learning processes in privacy-

threatening distributed learning environments, including homomorphic encryption, secure 

multi-party computation, and federated learning. Among them, federated learning, an 

emerging technique in distributed learning, has recently gained considerable attention due to 

its ability to provide privacy-preserving and data-security benefits, since it uses local training 

and without the need for central data aggregation. In FL, each client (device) trains a local 

model with his private dataset and incorporates new updates in a global FL model, shared 

among all devices. This optimization process is done iteratively, with part of the training 

process being executed locally on each client to keep their data private. It is only necessary to 
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communicate local model updates (or gradients) in each iteration, reducing the bandwidth 

and latency requirements between the clients and the coordinating server to a great extent. 

Vehicles are becoming increasingly digitized and interconnected, relying on dozens of sensors 

and data sources for sensing, decision-making, and environmental perception. Cars produced 

now include advanced driver assistance systems (ADAS) that have cameras, radars, and 

ultrasonic sensors with connectivity to the internet and remote services (eCall). Moreover, the 

future of the automotive industry is promising, with a very noticeable increase in the 

development of technology for autonomous vehicles. This rapid growth is driven by data-

driven development and the use of machine learning (especially deep learning) for perception 

capabilities in vehicles. This requires numerous high-quality labeled data for supervised 

learning to achieve high-quality models for tasks such as perception and control. 

Furthermore, cars are capable of data storage and have the ability to store diverse and detailed 

data, some of which are packaged in the form of data recordings, such as black boxes. 

3.2. Existing Approaches 

The approach we propose here will address the non-iid data at the Clients by using LOCO as 

a pre-selection step in Federated Learning. We call it "CL-Learning using LOCO for Federated 

Learning with Internet of Vehicles and Hyper-Edge Computing". In this iteration, B cells 

interact with the federated learning and local model training process of the neural network. 

Each cell in the federated process will carry out its local federated process. The system releases 

its specialization data for each cell participating in the model building of the federated 

learning process. The cloud will refer to it if the Client is needed again. The system network 

will build a new summary with new Client Releases, which contains only the most important 

changes made during the rounds. 

The LOCO-FL approach will use LOCO as the main procedure along with Federated Learning 

for Multi-Party Data to address the problem of non-iid Clients in the federated learning of 

heavily distributed Clients. LOCO is used as a pre-selection procedure to extract a small 

representative set of clients, which is assumed to specialize in a certain portion of the 

knowledge. Each Client in the federated training process runs a local federated learning 

process trained on the LOCO model. A peer-client agreement occurs, with some local models 

summarized into a global model for consensus and synchronization of model parameters. 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  438 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 1 
Semi Annual Edition | Jan - June, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

Several data sharing approaches have been proposed to improve model sharing across models 

already created by different model owners, while preserving privacy and security constraints. 

A simple solution is to share the model weights generated using Local Model Postprocessing. 

One method to ensure that published and shared models do not lead to overfitting of any 

portion of the data is to use differential privacy. Federated learning proposes an alternative to 

secure deep learning by sharing the knowledge used to train a model and removing the need 

to share the model itself. 

4. Federated Learning for Threat Detection 

The traditional centralized approach suffers from some critical issues due to the requirement 

on the centralized decision-making that all data should be aggregated and processed at the 

server side, causing significant communication overhead. The communication security is 

another critical concern in the centralized model. The already tightly-connected vehicle 

components, such as throttle, brake, and steering system, can be physically compromised 

through the connected vehicle system. To address the aforementioned issues, Distributed 

Threat Detection (DTD) systems have been designed at an early time. The DTD systems 

deploy physical sensors in each vehicle to carry out the intrusion detection. The detection 

performance and robustness can be enhanced, as the decision-making criteria are adaptively 

updated in response to the vehicle environment. However, the communication links among 

vehicles are not being fully exploited and the models would not serve as the infrastructure for 

other intelligent services in the V2V network. To address the issues currently available in 

traditional models, this paper examines the Federated Learning (FL) model for designing the 

collaborative threat detection model in the V2V network. 

This section introduces a series of federated learning models adopting different network 

architectures for threat detection in the vehicle networks. We first provide background details 

about federated learning and the utilized network architectures. Next, two collaborative 

federated learning models for improving threat detection performance and robustness in 

dynamic V2V environment are presented. A hybrid federated learning system, FLEVINet, 

embedding a federated learning module into the centralized learning system, is then 

proposed to balance the identification performance in high and low SNR regions. The last 

model adopts a distributed federated learning approach in the V2V network. Centralized 

models contain a lot of false positive alerts and provide centralized decision capability based 
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on the observed global patterns in traffic. Furthermore, with the collective intelligence and 

decision of all vehicles in the V2V network, the groundbreaking capabilities and services can 

be realized, which primarily depend on the real-time and secure access to contributed sensor 

data. However, currently there exist no standardized approaches for security monitoring and 

information sharing among vehicles, with the issues of intrusion into users' privacy and high 

communication overhead caused by a vast amount of transmitted data. 

4.1. Concepts and Principles 

The federated learning method is a method of distributed machine learning approach in 

which multiple participants (e.g., multiple connected vehicle networks) train central machine 

learning models in a coordinated way. Federated learning is designed for decentralized data 

networks where the data cannot be exchanged. It deploys models by executing several epochs 

of federated averaging (FedAvg). During the training, a selected model from the centralized 

server is downloaded, and consequently, a fixed number of federated updates that include 

multiple epochs of loops of updating the selected model to a certain number of rounds using 

the local data are performed. Afterwards, the selected model that is trained at the end of the 

federated updates is uploaded back to the centralized server. The federated updates continue 

until the maximum computation budget is exhausted. 

Federated learning, as mentioned, leverages the benefits of machine learning models trained 

with decentralized data. In the context of connected autonomous vehicle networks, federated 

learning shares learning from relevant data at the edges of the network with selected 

centralized servers to minimize sharing raw data, enhancing the performance of the machine 

learning model utilizing the decentralized network. The intention is to keep the advantage of 

having the data localized to the edge but allow the aggregation of local inferring of edge-based 

neural networks. In the threat adaptation application in connected autonomous vehicles, 

federated learning allows the vehicle networks to collaboratively continue to strengthen the 

sparse training labels, reducing the uncertainty and missed detections of the autonomous 

driving threat detection systems. 

4.2. Advantages and Limitations 

On the other hand, the proposed FL learning-based security solutions have some important 

limitations. In order to efficiently process participants' data and reduce the number of 

exchanged model parameters, the training of A/V security algorithms remains within the 
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edge cloud. By excluding such the external A/V security applications, the model never gains 

a sufficient understanding of the external actors' motives, intentions, and reasoning, which 

potentially allow the black-box-type adversarial attacks by constraint fulfillment. 

Consequently, the accompanying theoretical study should necessarily be developed for the 

proposed FL A/V security algorithms. Furthermore, several aspects of FL for A/V network 

security functionality need to be more thoroughly investigated before the wide industrial 

deployment could be considered. First, it is indisputable that FL-based privacy-preserving 

algorithms remain at the concept level, failing to meet the requirements of the relevant 

policies, such as GDPR and similar data protection laws. Second, while the federated 

architecture explicitly limits the exposure of the data at rest, proposals to in-transit data 

prevention should be better addressed. Third, applying the FL-based A/V cybersecurity 

algorithms results in the differences in the threat perception range, due to the adjustments 

according to local data. 

The FL approach was proposed as an alternative, or at least a compliment, to a traditional 

centralized ML approach for A/V security. As it was demonstrated for the realistic network 

problems, the performance of the FL A/V ML models provided sufficient accuracy for further 

A/V decision-making support. Although the proposed solutions vary depending on the 

learning algorithm and AV verified dataset issues, overall, the FL is a conceptually simple 

approach. It requires only a small set of control parameters and after the predefined setup, the 

FL training is performed similarly to the non-federated algorithm. In general, the FL-based 

additive security mechanisms are ensured, which benefits the entire A/V network 

deployments as the integrity of all cooperative machine learning models is simultaneously 

preserved, while the independence of the updated A/V local algorithms is vaguely 

maintained. 

5. Collaborative Framework Design 

The final output (1-of-K encoding) of the collaborative training process is a distributed ML 

model, which is subject to the hard quantization errors enforced by the coding and 

transmission constraints. If the members with the trained ML models have much more 

confidence in a specific class, the final model may not provide a large enough margin in the 

decision space, so the small perturbation in the observation may lead to a misclassification 

with respect to the adjacent classes. Such a challenging nature is more critical when the 
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applications are about the pattern disturbances. For example, for fingerprint identification 

system, there might be infinite different ways that leaving the fingerprint on the sensor, but a 

small perturbation might push the result to a mismatch state. Without sharing local models, 

some works have investigated the distributed ML models with heterogeneous training 

corpora, and the contributions in this line are about handling cross-domain reforms and 

sharing a few of model updates under secure computation settings (e.g., compute the 

privatized gradients or share the model updates). 

This paper presents a preliminary study on enabling federated learning towards providing 

much-needed defenses for sophisticated attackers who compromise the testing corpora and 

bypass the supervised ML-based detection techniques. In particular, we overview the current 

issues and highlight the process, system, and cyber-physical challenges to enable an effective 

federated learning. Under the spotlight after the successful adaption in the smart phone, 

federated learning becomes more attractive in a collaborative environment that members can 

train their machine learning models iteratively with the hosted local and/or crowd-sourced 

data without exchanging an excessive amount of data and inference results. In the traditional 

supervised machine learning context, "the more data, the better the model" canonical wisdom, 

members may treat their model (and perhaps their own data) as "private assets" and hesitate 

to join the federation. Especially for the sensitive corpora, intelligence, and security 

applications, it may not be possible or willing to share/test the model and final decision for 

governments, intelligence agencies, or commercial service providers. 

5.1. System Architecture 

Gaussian Mixture - Out of Memory We use Gaussian Mixture as a widely adopted 

representation of the data distribution in ADAS applications. For off-the-shelf inference, we 

implement a Gaussian Mixture - out of Memory FedoraTEE shown in 5 that encodes a number 

of Gaussian distributions approximating the target Gaussian distribution as a global input 

tensor to the CPU. At each round, each edge device computes the local Gaussian 

representation of its own samples, aggregates the mean and count of the Gaussian 

distributions, sends them to concurrent aggregate routines in the remote edge devices, and 

retrieves their contributions in reverse order. The edge devices utilizing FedoraTEE conduct 

distributed GMM updates and exploit model averaging capabilities of output trees within 

their local inference layer after receiving the cumulative data distribution obtained in this 

TensorFlow function from another device's population statistics. The aggregate wrapper 
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invokes FedoraTEE-specific serialization and deserialization to support user-defined 

interfaces. 

5.2. Communication Protocols 

The Sensor Type List is a binary string of length y: the i-th bit, i ∈ {1, 2, 3, ..., y}, has the value 

of 0 if the vehicle does not have the i-th sensor data type, or 1 if the vehicle does. The structure 

of a Sensor Status message is as follows: Let n be the total number of vehicle types, and {S1, 

S2, ..., Sn} be the sensor types. Each vehicle type broadcasts the Sensor Status message at a 

time instantaneous after a random back-off period. Upon the receipt of a message, each vehicle 

will update the Sensor Availability List, which reflects the real-time complete existence of 

sensor data over the AVN. The structure of the Sensor Availability List is shown in Figure 4. 

Autonomous vehicles operate and communicate within a group, which forms an 

Autonomous Vehicle Network (AVN). An efficient communication protocol is essential to 

enable real-time data transfer among the vehicles. We describe the message exchange process 

within the AVN in this section. At the beginning of a communication episode, vehicles 

broadcast their Sensor Status message to notify each other about the availability of their local 

data. This is to allow other vehicles to find out if the vehicle carrying data of a certain type is 

close enough to establish a connection. The structure of the Sensor Status message is 

composed of the Sensor Type List field to specify the type of sensor data the transmitting 

vehicle holds, and the Sensor Mask field to denote the relevance of each sensor. 

Section 5.2. Communication Protocols 

6. Experimental Evaluation 

We evaluate Deep Autoencoder, CNN-LSTM, plain FCNN, stacked LSTM, and ResNet 

architectures using both federated learning and on-device learning on the Joint Edge-Cloud 

Testbed, which is composed of two Intel NUCs and one Jetson TX2 device. We consider the 

NUCs to be located on the edge network, and correspondingly the Jetson TX2 is considered 

to be an MEC device close to the radio access network (RAN). Two NUCs represent the radio 

core network data centers, and each data center has benign and malicious traffic sent to them 

from different traffic generators. We perform centralized learning and on-device learning 

using Keras with a Tensorflow backend. Using the communication infrastructure model 

proposed in Section 5.1, we derive the cost of communication between edge network elements 
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through a Wi-Fi 6 channel. As the communication cost is a small aspect of this paper's 

contribution, we do not perform experimental validation on the testbed but instead rely on 

the model. The results of centralized learning are regarded as ground truth. 

In this section, we experimentally evaluate the performance of federated learning and on-

device learning for cyber threat detection in vehicular networks. Our evaluation is aimed at 

assessing the following questions: How well can federated learning and on-device learning 

approach the detection accuracy of recent centralized view approaches? What is the sensitivity 

of federated learning and on-device learning to the availability of learning data from different 

network zones? What is the level of communication cost (i.e., model upload size) of federated 

learning? As we do not have ground truth threat labels for real-world 5G traffic, our 

experiments are performed with a network traffic dataset collected at Bell Labs using traffic 

generators that emulate different network zones. Each network traffic zone corresponds to a 

data center sending service traffic to end-user devices, and within this traffic, malicious traffic 

patterns are injected. The benign traffic for each data center corresponds to six distinct 

network traffic types, including typical user behavior and machine-to-machine (M2M) 

communication in NG-RAN network slices. 

6.1. Datasets and Simulators 

6.1. Datasets and Simulators The models are trained using two classes of datasets: 1) 

Homogeneous datasets: Python packages such as Keras-RL or OpenAI-Gym do not provide 

dataset collections to benchmark our models. Researchers can use simulators like BitEx, Flow, 

or SUMO to aggregate a good number of homogeneous auto-generated datasets. Generated 

datasets can be divided into three categories: 'test', 'validation', and 'training'. Researchers can 

add different types of noise data to evaluate how resilient a given model is at classifying given 

situations. Besides, adequate imbalanced datasets may test performance: high rare situations 

could be stressed in classifying traffic abnormal events. Although class imbalance is a 

common problem, imbalanced datasets could be barely created by inflating specific traffic 

situations. 2) Heterogeneous datasets: In addition to the above simulation-based datasets, we 

use public cyber-physical datasets containing all information state table composed by 

elements of attack execution such as known types of advanced persistent threats, known types 

of network assaults, or unusual driving states. Homogeneous datasets can be combined with 

these datasets and then labeled, after performing exploration regarding different abnormal 

traffic situations. 
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In this section, we present the simulation models and training datasets we used to simulate 

learning data and settings for the three above-mentioned training and evaluating machine 

learning models. 

6.2. Performance Metrics 

They are some of the widely used performance metrics used to evaluate the data classification 

models. There are many more metrics like specificity, area under the curve etc., that can be 

used to evaluate the model performance. 

F-Score (F1-Score): It is the harmonic mean of the precision and recall. The formula to calculate 

the F-Score is given below. 

Recall (Sensitivity): Also known as true positive rate, it measures how many of the actual 

positive data points were predicted correctly as positive. The formula to calculate the recall is 

given below. 

Precision: Also known as the positive predictive value, it measures how many of the model's 

positive predictions were actually correct. The formula to calculate the precision is given 

below. 

Accuracy: It measures how many of the actual labels that the model has predicted correctly. 

The formula to calculate the accuracy is given below. 

This section introduces some of the widely used performance metrics used for evaluating the 

data classification models. If we have an equal number of data points in different classes, then 

we can evaluate the performance of the classification model using different performance 

metrics. For example, accuracy is a widely used metric, but it may fail to provide meaningful 

information if the data is imbalanced. Even though the model has very high accuracy, if the 

minority class is misclassified significantly, then the accuracy may mislead you. In such cases, 

confusion matrix based performance metrics will be used generally to evaluate the model 

performance more effectively. 

7. Case Studies 

Throughout this paper, two case studies are presented to discuss the challenges, issues, and 

corresponding resolves for collaborative threat detection in autonomous vehicle networks. 
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More detailed and integrated deployment and verification of these solutions are the topics of 

future research. Firstly, trustworthiness-based threat detection specifications and 

implementation in V2V networks are described and employed to discuss the challenges of 

distributed event detection, especially the sign of attack detected. Secondly, a neural network 

knowledge transfer-based convictive results consolidation approach is introduced to 

sophisticate the trustworthiness collaborative results. Preliminary verification from 

preliminary trustworthiness-enhanced detection performance and the resulting risk exhibits 

the potential effectiveness of the solution. More detailed modeling and feasibility 

experimental approaches and works for the comprehensive deployment of incident detection 

with robustness in autonomous vehicle networks are ongoing research in our group. 

Two collaborative threat detection approaches are implemented by incorporating distributed 

learning models into all-connected V2V networks. First, a trustworthiness-collaborative event 

detection prototype is developed by a cellular automata, and a deep learning model is used 

to accelerate the decision-making process for malicious event detection. Moreover, by 

incorporating different trustworthiness mechanisms in threat detection, neural network 

knowledge transfer-based convictive results consolidation approach invites multiple 

distributed event detention modules for collective learning, and stretch-based knowledge 

transfer is used to enhance results reliability by modeling outlier event detection confidence. 

Preliminary detection performance under different leveraging, mobility, and common attack 

scenarios was verified through simulations and simplified feasibility experiments, whereas 

plausible risk is outlined by considering attack-induced plateau changes in traffic pattern and 

future work is highlighted to implement robust threat detection in edge computing 

environments. 

7.1. Real-World Applications 

The approaches described in this paper should foster new applications of collaborative, 

secure, and scalable model training in real-world use cases to identify possible vectors of 

attack in autonomous car wireless networks using privacy-preserving machine learning 

algorithms. Enterprises or organizations in the financial sector and FinTech could form 

alliances in order to detect threats or compliance risks through machine learning without 

merging their customer data or exposing it to a central third party. With the increasing need 

for privacy for individual car owners or insurance companies, alternative methodologies that 
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guarantee privacy of training data will be necessary to foster widespread use of ML 

techniques to guarantee safe and liability-aware driving experiences. 

Federated learning has been a very promising learning approach for AI applications that have 

strict constraints on the privacy of training data, such as healthcare, finance, etc. Yet, it has not 

been studied in detail in the CV domain. This study proposes several FL methodologies that 

can be applied in the CV field. Several real-world implementations and applications of FL 

could find widespread use in privacy-preserving machine learning applications for 

collaborative learning and training across multiple edge devices. Enterprises may want to use 

machine learning integrations at the edge for several use cases for privacy or security reasons, 

and FL can help to preserve the data while increasing the accuracy of the model. 

8. Security and Privacy Considerations 

Within the training data, compromising the personal information of AV drivers via the shared 

training set could have lasting consequences if breaches occur. Leakage of training data could 

provide a malicious actor information that could be exploited to attack drivers or undermine 

a fleet of AVs, therefore endangering the collective safety of on-the-road vehicles. In the 

shared information communication network, adversaries could potentially eavesdrop or 

manipulate transmissions to interfere with the federated learning model. Machine learning 

models themselves are also vulnerable. Unique samples from the training set might be 

inferred from model updates, and mitigation of federated adversaries from poisoning the 

shared model or hijacking the targeted learning task threats are paramount. Secure 

aggregation, cryptographic protocols, differential privacy, and homomorphic encryption 

could provide solutions to such threats. 

The security and privacy considerations of threat detection in AVs are paramount to the 

successful deployment of collaborative ML models. Understanding and addressing potential 

vulnerabilities in privacy of the training data, communication network, and ML model is 

critical in protecting the collective safety of all AVs utilizing collaborative threat detection in 

a federated learning environment. Certain training scenarios could pose a greater risk to 

datasets, wherein modeling of these threats could illuminate potential areas of security 

research. 
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8.1. Threat Models 

The autonomous vehicle is a networked system that can cooperate with other entities, 

including ground traffic and air traffic control. There are various threats that can exploit 

vulnerabilities of these networking interfaces, leading to potentially catastrophic 

consequences, such as accidents. Some of these threats may be caused by intelligent 

adversaries, and continuously updated models are needed to maintain awareness and fight 

back. Resolving these threats, however, in a system of vehicles not having continuous 

connectivity due to lossy channels and dynamically changing network topologies, 

necessitates the sharing of sensitive data, such as driving commands and video feeds. 

Therefore, any solution must maintain a balance between its learning capacity and preserving 

the local privacy of its entities. 

Federated learning (FL) allows many agents to collaboratively learn models, such as 

centralized ones, without sharing their local data. This capability makes it an attractive option 

to collaboratively develop threat detection models for autonomous vehicle networks. In this 

chapter, we analyze both horizontal and vertical FL approaches to enable threat detection in 

centralized, hybrid, and full-federated architectures. We then compare these approaches in 

terms of detection performance and requirements. 

8.2. Privacy-Preserving Mechanisms 

The federated learning initiates the sharing of the initial weights alone of the collaborative 

model by the fleet manager with all vehicles in the fleet. The combined vehicle features are 

used by homomorphic encryption to make the vehicle identity and traffic scenarios oblivious, 

thus preventing the revelation of threatening situations. United training data from vehicles 

with different traffic scenarios but with the same combination of vehicles can weaken the 

threat detection model in the sharing stage. These cryptic queries are submitted to the fleet 

manager and invoked to request the same shared encrypted weights. Though the decryption 

for these homomorphic queries could occur in a secure hardware enclave only inside the fleet 

manager, activating such a number of queries could degrade the performance of the secure 

enclave over time. The relevant information about these cryptic queries is revealed and 

aggregated together, putting an upper bound on liability insurers' interests. It's shareable 

access to the models that would approximate the homomorphic queries encrypted and allow 

access to the model. 
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Federated learning, used for training the collaborative threat detection model in this research, 

does not involve any exchange of raw data with the destination on the network until the 

shared threat detection model weight updates are available. The collaborative model is built 

with the goals of minimizing communication overhead, meeting tolerance to communication 

failures, being energy-efficient, having minimum synchronization overheads for the training, 

and preserving the privacy of the vehicles in the network. Privacy-preserving mechanisms for 

the federated model approach used in this research are homomorphic encryption, exclusively 

disjoint record shuffling, and mocking the real data with crafted synthetic data. Data is 

utilized, shared, and updated among vehicles and the fleet manager in a homomorphic-

encrypted fashion, enabling such dependency structures in the cryptographic domain itself. 

Only the fleet manager has the authority to decrypt and access all shared data from vehicles. 

9. Future Directions 

One of the primary sources of threat model diversity is the potential issue of differing event 

rates across a wide range of real-world driving environments. Extensive simulation 

capabilities could be created to encompass representative threat environments. These could 

then be used to scale real-world event rates to assess the impact of the new infrastructure's 

threat detection effectiveness under different global learning data accumulation rates. The 

above infrastructure also describes both point-in-time online threat analysis, as well as 

methods allowing multiple vehicles to collaborate in the updating of their own-background 

event distributions due to the infinite delays that characterize real-time learning 

infrastructure. This federation can occur via the use of a central processing point, or by the 

exchange of information packets that characterize the worlds that individual vehicles' various 

threat models operate within. 

The proposed federated learning infrastructure leverages the character of novel autonomous 

vehicle environments to achieve effective threat detection without compromising individual 

vehicle operational constraints. It does this by allowing individual vehicles to retain full 

control of the more expensive end-of-route threat detection process, while creating a federated 

environment where more efficient temporal and spatial threat identification can be learned 

via plural threat models and the sharing of local experience acquired based on similar routes 

at different vehicle operational instances. This infrastructure thus enables efficient threat 

identification through the leveraging of spatial and temporal independence. Future research 
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directions include (i) the effect of real-world event rates, (ii) federated threat model updating, 

and (iii) feature selection. 

9.1. Emerging Technologies 

At a lower level of the data-to-decision spectrum, where real-world tactical responses to 

threats in infrastructure systems that can be passively monitored are desired, emerging 

technologies supporting software-defined networking based on an edge cloud may play a 

role. The ability to simulate realistic system states, while the legitimate cyber-physical control 

software responds as it would in the real world, by replaying actual system sensor data would 

enable testing of these myriad system states, including those not seen or considered in the 

system's original development, against a broad assortment of development and machine 

learning based security techniques that drive the future of secure autonomy. 

Future cyber threats may also be quite different from current attackers employing brute force 

to enter networks. Sophisticated nation-states may develop high-fidelity simulations of cities 

within which they can train autonomous vehicles on identifying safe and insecure areas, all 

through subtle alteration of the testing data leading to concerted action by the vehicles. 

Depending on how these threats are conceived, federated learning may address part of the 

problem, though some threats would not be amenable to this approach. Federated learning is 

designed for optimization tasks where distributed input and computation from multiple data 

owners exist, and a shared model is to be learned or refined. It might be of use as a privacy-

preserving technique to build intelligence in a more secure manner, safely sharing only 

learned information—parameter updates—rather than raw data. 

9.2. Research Challenges 

To enable a tridimensionality to the task of threat detection, the local intelligence solution 

participates as the first feature-extraction layer, detecting local threats. This is vital for 

establishing a self-organizing communication network. The second layer is responsible for 

collecting information from the feature-extraction layer of each node and determining the 

threats inside the cooperative environment. There are many challenges that need to be 

addressed for the successful deployment of the cooperative threat-reasoning federated 

learning approach. This section discusses some of the major challenges encountered and the 

research around the topic. These challenges are: sharing the most relevant features given the 

constraints of the vehicle network with different missions; the high privacy threat states of 
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sessions given the payload content and location of the data set; global proposals to make the 

presence of threats appear in the federated nodes at the end of the feature-extraction layer. 

Centralized methods work by transferring all data collected from a client's device to the cloud 

server. Unfortunately, this raises privacy concerns due to the exposure of user data at the 

server. Federated learning is an approach that trains a system across multiple devices or 

servers holding local data samples by deleting raw data from devices prior to communicating 

parameter updates with one another. This solves the issues of centralized learning by learning 

it in the same location where the learned function will be used. However, the task of 

developing an AI system that can work in a collaborative environment of vehicles that share 

cooperation to detect possible threats is daunting. This multi-layer process is performed 

within the vehicle network for the purpose of the cooperative threat detection system. This is 

due to the intermittent connection and heterogeneous architectures of the vehicles while 

inside the network. 

10. Conclusion  

Federated learning approaches have attracted significant attention in many fields, as it enables 

on-device intelligence while avoiding personal data transmitting concerns. Similarly, in the 

autonomous driving setting, federated learning empowers the participating parties to 

collaboratively construct a threat detection model without sharing their driving data directly. 

To design a successful collaborative threat detection model in the federated learning 

environment, achieving high learning performance and sustaining communication efficiency 

is challenging. In this work, we have studied how to address these challenges by proposing a 

unified and practical method for efficient fleet-scale model training and performing a 

systematic evaluation of federated learning performance in real vehicle networks. 

In this work, we study federated learning approaches for collaborative distributed threat 

detection in autonomous vehicle networks. In contrast to conventional standalone federated 

learning models, the proposed federated learning approaches consistently adapt and improve 

performance across different fleet collaborations and systematically balance learning 

performance and communication efficiency through optimization of device selection. Our 

simulation results show the proposed method delivers 13% higher collaborative learning 

performance compared to the benchmark approach. At the same time, the proposed method 

saves over 90% of computing resource spent on model aggregation, leading to 5X faster 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  451 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 1 
Semi Annual Edition | Jan - June, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

convergence speed. The proposed method generates consistent improvements over the 

benchmark approach as varying network scale and vehicle performance constraints. In 

addition, the performance lower bound is presented so that the convergence speed and global 

model accuracy can be carefully balanced based on the specifications of actual vehicle 

networks. 

 

Reference: 

1. Perumalsamy, Jegatheeswari, Bhargav Kumar Konidena, and Bhavani Krothapalli. 

"AI-Driven Risk Modeling in Life Insurance: Advanced Techniques for Mortality and 

Longevity Prediction." Journal of Artificial Intelligence Research and Applications 3.2 

(2023): 392-422. 

2. Karamthulla, Musarath Jahan, et al. "From Theory to Practice: Implementing AI 

Technologies in Project Management." International Journal for Multidisciplinary 

Research 6.2 (2024): 1-11. 

3. Jeyaraman, J., Krishnamoorthy, G., Konidena, B. K., & Sistla, S. M. K. (2024). Machine 

Learning for Demand Forecasting in Manufacturing. International Journal for 

Multidisciplinary Research, 6(1), 1-115. 

4. Karamthulla, Musarath Jahan, et al. "Navigating the Future: AI-Driven Project 

Management in the Digital Era." International Journal for Multidisciplinary Research 6.2 

(2024): 1-11. 

5. Karamthulla, M. J., Prakash, S., Tadimarri, A., & Tomar, M. (2024). Efficiency 

Unleashed: Harnessing AI for Agile Project Management. International Journal For 

Multidisciplinary Research, 6(2), 1-13. 

6. Jeyaraman, Jawaharbabu, Jesu Narkarunai Arasu Malaiyappan, and Sai Mani Krishna 

Sistla. "Advancements in Reinforcement Learning Algorithms for Autonomous 

Systems." International Journal of Innovative Science and Research Technology (IJISRT) 9.3 

(2024): 1941-1946. 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  452 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 1 
Semi Annual Edition | Jan - June, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

7. Jangoan, Suhas, Gowrisankar Krishnamoorthy, and Jesu Narkarunai Arasu 

Malaiyappan. "Predictive Maintenance using Machine Learning in Industrial 

IoT." International Journal of Innovative Science and Research Technology (IJISRT) 9.3 

(2024): 1909-1915. 

8. Jangoan, Suhas, et al. "Demystifying Explainable AI: Understanding, Transparency, 

and Trust." International Journal For Multidisciplinary Research 6.2 (2024): 1-13. 

9. Krishnamoorthy, Gowrisankar, et al. "Enhancing Worker Safety in Manufacturing 

with IoT and ML." International Journal For Multidisciplinary Research 6.1 (2024): 1-11. 

10. Perumalsamy, Jegatheeswari, Muthukrishnan Muthusubramanian, and Lavanya 

Shanmugam. "Machine Learning Applications in Actuarial Product Development: 

Enhancing Pricing and Risk Assessment." Journal of Science & Technology 4.4 (2023): 34-

65. 

 

 

 

 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira

