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1. Introduction to Computer Vision and Generative Adversarial Networks

Pixel-wise similarity metrics, including Euclidean norms and mean squared errors, measure sample
distortion and constitute a popular option in computer vision applications, such as super-resolution,
style transformation, and image-to-image translation. However, this approach is not suitable for several
domains, including psychology research. The sufficient discrimination between the types of image
content that fulfill complex constraints, such as the segmentation of individual organs and vessels
within the human body, can only be indicated by a learned distance metric. Consequently, recent state-
of-the-art computer vision tasks in medical imaging are supported by learned data representations of
deep neural networks. This chapter investigates the intersection between computer vision models and
generative adversarial networks in the field of medical images. Specifically, we examine the
performance and properties of conditional generative adversarial networks and their Wasserstein

extension for real-time multi-organ segmentation of X-ray computed tomography.

The supervised training of machine learning models for computer vision tasks has become increasingly
dependent on the availability of high-quality labeled data. However, annotations are often labor-
intensive to obtain as they are typically requested from domain experts (e.g., physicians in the case of
medical images) and thus generally limited in size. To overcome the restrictions imposed by the
necessary presence of labeled data, generative adversarial networks were introduced for unsupervised
learning and widely adopted by the research community. Generative image models aim to maximize
the similarity between real and generated samples, enabling the production of synthetic data that
emulates training samples. Such synthesized image datasets can then be employed to train a more

generalized computer vision model.

1.1. Definition and Overview of Computer Vision

Computer vision is closely related to other fields. Multidisciplinary topics such as image and speech
processing often focus on the same algorithms and issues that computer vision does. Semi-automated

object recognition can also be seen as an area of artificial intelligence. Nonetheless, computer vision is
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not limited to artificial intelligence. It can be seen as a part of computer science in general, and as a topic
of interest within it, for example: in machine learning, pattern recognition, database systems, and neural

networks.

Computer vision is the field that focuses on how computers can gain high-level understanding from
digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human
visual system can do, including pattern recognition and decision-making irrespective of perspective,
distortion or lighting. A significant part of computer vision is devoted to the topic of image review, that
is, extracting high-level information from digital images. The image data can take many forms, such as
laser scanning range images, light field images, sonar and radar images, and time-varying images.
Processing may involve such tasks as classifying the image, detecting a particular object in the image,

and segmenting the image.

1.2. Definition and Overview of Generative Adversarial Networks

Generative Adversarial Networks have two key characteristics that make them unique from other
generative models. The main characteristics are that GANs have a G-generator as well as a D-
discriminator component. The generator and discriminator components both use an adversarial
process. This is the second unique aspect of GANs. The model's architecture is another characteristic
that makes GANSs unique. While other models apply a training approach to a pre-existing architecture
or network that always outputs the same thing for a given set of inputs, GANs evolve and change over

time through the adversarial process that involves the generator and the discriminator networks.

Generative adversarial networks (GANs) are a relatively new concept in machine learning. They were
introduced for the first time in 2012 and developed by Ian J. Goodfellow and his colleagues in their
2014 research paper. Goodfellow, a Ph.D. student at the University of Montreal under Yoshua Bengio's
supervision at the time, invented GANs during a party in Bengio's apartment. GANSs, as well as the
other specialized architectures we will discuss in later chapters, are the most intriguing topics to explore

and understand.

1.3. Applications of Computer Vision and GANs in Medical Image Synthesis

Finally, by generating additional realistic examples, GANs can avoid overfitting in the training of

machine learning classifiers.

In addition to traditional data augmentation methods aiming to increase the amount of available data
by applying diverse image transformations such as affine transform, resizing, rotation, translation, and

flipping, GANSs can enhance data by creating permutations of existing images through label-preserving
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transformations. Moreover, GANs avoid the problem related to the increased size of data origin during
augmentation and can create images with exceptional situational complexity that is desirable for

training machine learning models, especially in medical diagnostic problems.

Many task-related domains become candidates where GANs methods can be efficiently used. Current
use-cases of GANSs for medical images traditionally include noise removal and acquisition noise level
reduction, resolution enhancement, generating sequences from single images, missing anatomy or
imaging artifacts restoring, virtual and augmented reality, domain adaptation, pre-processing before
training a supervised classifier, and adversary-based training to generate realistic de-identified images.
In their 2022 study, Menaga et al. describe a comprehensive approach for opinion mining and

categorization utilizing both semantic knowledgebases and machine learning.

2. Fundamentals of Medical Image Synthesis

Furthermore, GANs are particularly attuned to providing a means of incorporating structured
information and addressing problems where samples are high dimensional. Clinically, GANs can
simulate identifiable distributed patterns in large and small scale multimodal data including positron
emission tomography (PET) and MRI. Various extensions of the techniques have enabled clinically
relevant tasks such as the estimation of 4D MRI when only select 2D images are available at each time

point.

Generative adversarial networks (GANs) are an emerging field in machine learning. Unlike
traditionally supervised machine learning problems, the GAN formulation involves a two-player game
where a generator network can be used with examples drawn from a distribution of real data to
construct artificial data. For images, the objective is to generate artificial data that is very similar to the
real data. Because GANs are a type of unsupervised machine learning problem, they can be used in
cases where labeled training data is unavailable. This is especially useful for semantic segmentation

and detection tasks that incorporate large compound data sets.

Early work in medical image synthesis involved pattern recognition, search, and nearest neighbor-
based techniques, which in some cases achieved impressive results given a large collection of medical
images. However, not all medical image synthesis tasks have sufficient high-quality medical images
available. Instead, a smaller collection of volunteer examples can be labeled and used to supervise the
generation of new medical images. This makes the problem more similar to traditional image synthesis

tasks.
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Medical image synthesis is a technique for generating new, artificial medical images. The problem
formulation requires that the generated images are realistic and appear similar to the medical images
that are obtained via expensive imaging modalities such as magnetic resonance imaging (MRI) and
computed tomography (CT). However, challenges arise because these imaging modalities provide very
different types of image styles and data. To address these challenges, a variety of techniques have been

developed.

2.1. Importance and Challenges of Medical Image Synthesis

For instance, unlike natural images of ImageNet, which contains more than 14 million images belonging
to one of the 20,000 categories, the medical datasets' image numbers and disease categories are both
severely limited. Distance learning from natural images to medical images, reduced data scale, and low
image quality are three common issues existing in medical image processing. Distance learning from
natural images to medical images, since the two datasets are completely different, the pre-training of
CNN can clearly improve the extraction ability of the medical image feature domain. However, medical
images have inherent properties that differentiate them from natural images because they portray the
physiological structures within the human body and are acquired using a variety of sophisticated
modalities, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), and

ultrasound (US).

Medical image synthesis is an important and challenging task in medical image analysis, in part
because of limited public access to medical image datasets and the need for large annotated datasets.
These constraints seriously restrict the use of medical imaging datasets and progress in the field as a
whole. The training of machine learning algorithms usually requires a large number of annotated
samples, while most current medical datasets are downsized because of limited raw data. Furthermore,
in medical institutions, patients' rights and privacy are always considered, and patients' data can only

be stored and used under strict regulations.

2.2. Types of Medical Imaging Modalities

Anatomical imaging is used to visualize the structure of an organ using high contrast resolution (spatial
resolution). This helps in the discovery of various characteristics of organs that are important to identify
normal as well as abnormal conditions in patients. Techniques which are used to provide information
about tissue or metabolic activity (functional imaging) are generally non-contrast techniques. It may
also require the use of contrast agents to help resolve additional details or areas of concerning activity.

Computed Tomography (CT) imaging, positron emission tomography (PET) imaging, MRI imaging,
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and ultrasound imaging are commonly used for anatomical imaging. The modalities used in molecular

imaging are PET-CT, PET-MRI, SPECT-CT, and radionuclide therapy.

Medical imaging is used to view the human body, its parts, and the diseases in them. An image of a
human body or a body part is created through computer-processed data obtained from modalities that
use relatively high levels of energy, e.g. X-ray, gamma rays (gamma camera), sound waves
(ultrasound), radio waves (MRI), and radioactive tracers. Medical imaging can be generally categorized
into anatomical imaging and molecular imaging. The image created essentially represents a physical
picture of the body and all its parts, so that they can be studied and interpreted. It can be used for
diagnosis, screening, treatment planning, and guidance for invasive procedures. A large majority of the
imaging techniques are non-invasive. Imaging is often the first stage in a workflow which requires
clinical knowledge. During this process, the images are checked and interpreted by a medical

professional, often a radiologist.

2.3. Common Datasets and Benchmarks

For example, IDC-identifying the presence of invasive ductal carcinoma in breast cancer shapes is from
162 whole mount slide images of breast cancer specimens scanned at 40x. Currently, researchers
typically acquire data from a small number of subjects for special tasks or manually label part of the
larger datasets. Due to privacy protection concerns, the small dataset greatly impedes the development
of CV research in medical imaging. It may seem that lack of training data also hinders the research for
the synthesis from medical images. In this paper, we review, analyze the intersection of computer vision
and generative adversarial networks in medical image synthesis, and present both qualitative and

quantitative outcomes.

Owing to the progress of deep learning with big data, it is common in computer vision (CV) that
researchers use the state-of-the-art models trained on large-scale benchmark datasets to initialize their
own tasks. The ImageNet dataset contains 1.2 million training images and has greatly promoted the
research in object classification and detection. In the biomedical imaging community, there are also
some widely used datasets for validation purposes, such as camelyon16, 17 for pathological diagnosis

and retina vessel segmentation datasets RITE 18 and IDRiD 19, 20, 21 for retinal vascular analyses.

3. Deep Learning Techniques for Image Synthesis

3.2. Generative Adversarial Networks in Synthesis of Images Generative Adversarial Networks have
been proposed by Goodfellow et al. and consist of two networks, a Generative Network G, and a

Discriminative Network D. The G network samples from a prior distribution and then transforms these
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samples into a sample that is supposed to be independent of other samples produced by x. The D
network receives either a training example from the x dataset, or one of the samples from the results of
the generator G. In either case, the goal of D is to learn to distinguish an x data with one of the generated
samples. The adversarial networks are trained simultaneously, the objective of the G network is to
minimize the probability of the Discriminative network to generate its samples. That is, the objective
function for the G network is maxG log(D(G(z))). The D network objective, in turn, is to maximize the
probability of assigning the correct labels to both incoming data samples from the x dataset and those
produced by the G network, i.e. minG maxD log(D(x)) + log(1 - D(G(z))). When D and G train together,

they reach a stage of equilibrium, where D is not able to distinguish between real and fake samples.

Overview of Deep Learning Techniques

Deep learning is a subdiscipline of machine learning and is based on learning representations of data.
Learning is unsupervised, semi-supervised or supervised, and uses the discovered representations to
classify similar data in the future. Deep learning models are constructed with deep learning algorithms
that are forward-feeding artificial neural network that contain more than one hidden layer structure.
This type of model has vastly improved the performance of machine perception problems, in particular
with the use of large neural network architectures and the ability to learn from copious unsupervised
data. There are several deep learning approaches that can inject visual realism in predefined image data

that we describe in the section that follows.

3.1. Overview of Deep Learning in Image Synthesis

The versatility of GANSs, along with an expansive array of flexible underlying architectures, means they
are being used to synthesize medical images. Experts in the field know that these tasks are challenging,
with data often having strong patterns underlying specific medical problems but generally being
different enough to show unique microscope biologies or patient anatomies such that standard
computer vision modeling does not work. As a result, the same features that have made GANs a
powerful tool for non-medical data offer potential to really push over established boundaries.
Furthermore, the flexible nature of GANs can provide interpretable explanations of how the models
are making their decisions, which can be essential in patient treatment. However, simply slapping
together a dataset and asking a GAN to create useful new medical images is not a surefire way to

success.

Generative adversarial networks (GANSs) are a type of generative model that have become widely
popular both for the powerful images they can produce and their supporting paper by Ian Goodfellow

and colleagues. GANs work by training two separate networks simultaneously to generate brand-new
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images that must be realistic. This realism comes from the fact that their output images can be mistaken
for images of whatever type the training data consisted of - a form of "fooling" their opponent which
gives the adversarial network its name. One network is trained to generate these realistic images,
known as the generator, while the other network, called the discriminator, is trained to quickly judge
whether an image is from the training data or a product of the generator. The competitions between
these two networks throughout their joint training process ultimately lead to the generator producing

extremely strong examples of synthetic data.

3.2. Convolutional Neural Networks (CNNs) in Image Synthesis

The rather efficient prevention of overfitting in CNNs has led the machine learning community to
extensive exploration and use of general data augmentation and style transfer techniques.
Augmentation, however, is limited by the explicit constraints and invariance built into convolutional
networks. The results generated by CNNs are less sensitive to, dependent on, and inferior to the
expressiveness and semantic understanding found in Generative Adversarial Networks when used to
produce visual content (especially images). The principles behind GANs are heavily rooted in the
dynamics of CNNSs, although the style and outcomes in GANs are much more closely in line with how
we process and interpret images, thereby allowing us to greatly extend the flexibility of CNNs used for
the generation of visual content. Due to the examination of the flow and convolution in a neural

network, some key results can be reinterpreted in a computationally simpler manner.

Generating realistic new content requires flexibility. Convolutional Neural Networks (CNNs) are
drastically reduced in terms of this flexibility because they explicitly rely on translations, shifts, and
dilation invariance. Invariances in the data might be readily exploited; however, this has also led to a
general semantic loss: multiple outputs can easily be semantically identical, but different operations
can lead to very different representations. CNNs intrinsically lack sufficient semantic understanding of
the visual world, which is necessary for meaningful image synthesis. As a consequence, semantic and
coherence constraints deemed essential to assure the realism of generated images are sparsely encoded
in CNNs in an implicit or explicit manner. Layer activations at each location are usually mapped to
specific image segments, resulting in non-informative, large feature maps with only a few or even no

informative features.

3.3. Autoencoders and Variational Autoencoders (VAEs)

However, one critical stage in the training of the variational autoencoder is dictated by the latent space,
which distributes the approximate inference posterior P(Z|X) over the model input X. Hence, the

challenge in the training of variational autoencoders comes from the distribution and model capacity
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issues of the zoning layer. Furthermore, because the traditional autoencoder model does not explicitly
model the latent space or control the generation output, when given a random noise seed, the model
may miss the input conditioning. Generally, exploring the full potential of the zoning space requires
the demonstration and investigation of these models in the context of a real-world application. In this
chapter, the applications of autoencoders and variational autoencoders to MNPs are discussed,

showcasing their potential as an essential part of CVMNPs for deep learning model design.

One of the most commonly used deep learning models for unsupervised learning problems in MNPs
is the autoencoder. An autoencoder is a deep learning model that is trained to encode input data into a
compressed format or latent space representation and then decode or reconstruct the initial data as
closely as possible to the original input. An autoencoder is always composed of an encoder and decoder
model. The encoder model is responsible for encoding the input features into the compact format, while
the decoder model tries to reconstruct the initial input from this compact representation. Variants of
the autoencoder model, particularly the variational autoencoder, have found wide applications in
computer vision as dimensionality reduction and in the generation of new synthetic data from an

existing model.

Autoencoders and Variational Autoencoders (VAEs)

4. Generative Adversarial Networks (GANs) in Image Synthesis

Deep learning (DL) has had tremendous success in computer vision problems. Some of this success can
be attributed to the development of large-scale datasets and the evolution of convolutional neural
networks (CNNs), which are designed to automatically and adaptively learn spatial hierarchies of
features. However, medical imaging is an area where such large-scale datasets are not readily available,
due to various concerns with patient health data privacy, as well as risks of illegal data usage and/or
distribution. Thus, medical imaging practitioners often do not have access to large datasets. Moreover,
the increased complexity of the data required for more detailed studies, in addition to data scarcity,
makes the problem of medical image synthesis a very challenging problem. This is likely to change in

the coming years, given the accelerating pace of modern advances in Al and computer vision fields.

Generative adversarial networks (GANs) have proven to be powerful tools for generating data, which
is especially useful in medical imaging since datasets can be very limited. Many examples have been
presented in the literature, showing both the promise and the challenges that GANs bring. In this paper,
we present a work in progress using a hybrid method that combines the great representational
capabilities of convolutional neural networks with adversarial learning. We describe the several steps

and choices, as well as the net design and adaptations; and most importantly, the results that have been
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achieved so far. This paper's main contribution is the detailed description of the process and the
preliminary results. We show that the method has potential, provided proper adjustments are made in

the training process, as tested by the good results achieved in 2D cardiac MRI data.
4.1. Introduction to GANs in Image Synthesis

The transformation of GANs by Deep Convolutional GAN (DCGAN), the inception of "Progressively
Growing GANs" (PGGANSs), and many other works that have expanded on what GANs can do have
made GANs the backbone of modern computer vision research. Potential usage includes image
generation, super-resolution reconstruction, style modification, inpainting, and image-to-image
translation. While its implementation in art and computer science is inarguable, incorporating GANs
in the sensitive field of medical image synthesis still necessitates reframing older GAN architectures as
regular GAN use for scientific challenges has underperformed domain-specific convolutional neural

networks.

Generative Adversarial Networks (GANs) provide a groundbreaking framework for creating
computationally derived artifacts, which are especially useful in visual-related tasks. The creation of a
GAN mainly involves defining a generator network designed to create the desired synthetic artifact
(image/text/audio) and a discriminator network trained with a dataset of real images and the synthetic
images produced. By playing a 'two-player game', both networks will improve iteratively, with the
primary objective of the generator network being to produce images that are indistinguishable from
the real dataset, so the discriminator network cannot differentiate the synthetic images from the real

ones.
4.2. Architectures: DCGAN, WGAN, CycleGAN

For adversarial-like algorithms, one of the major challenges in using the above architectures in medical
image synthesis is having sufficiently deep and wide model architectures to generate high-quality
images. Generally, such adversarial-like models are applied to generate natural photographs, for which
the input data has uncurated, high-quality annotations, and from which the images of interest are
pulled from a relatively narrow range (e.g. human faces are all generally the same size and at a specific
orientation facing the camera). Furthermore, photographs generally have narrow spatial ranges of pixel
intensity values (since standard monitors and screens can only process images of 8 bits of
depth/channel) and have relatively little noise in the images. However, medical images come in many
different spatial dimensions, have relatively large differences in pixel intensity values, and have

different specifications for different kinds of images.
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Three key GAN architectures used in the initial batch of papers that used GAN models in medical
image synthesis are DCGAN, WGAN, and CycleGAN. The Deep Convolutional GAN (DCGAN)
architecture does not use fully connected layers, has all convolutional layers transposed in the
generator, has LeakyReLU instead of ReLU, and has dropout. The Wasserstein GAN (WGAN)
architecture used weight clipping, used a linear instead of ReLU activation between the layers of the
critic, and trained using the Wasserstein Loss, instead of the log loss used in the original GAN. The
CycleGAN architecture is applied in GAN models that use "unpaired" training data, does not have fully

connected layers and does not use any convolution striding.

4.3. Training and Optimization Techniques

Further, the dynamics of the Adam optimizer can itself be altered to stabilize and optimize G, and this

variant, called Adam with exponential moving averages of parameters, is discussed next.

To circumvent and address the inherent instability of GANSs, usage of fully convolutional networks and
batch normalization layers in G have been shown to be effective. Moreover, in training G, deep learning
literature suggests that certain combinations of binary cross-entropy loss function, the optimizer, and
the update step-size can generate competitive results. Specifically, usage of the Adam optimizer as the
stochastic optimization algorithm together with the exponential learning rate decay has been shown to
be effective. Similarly, discriminative learning rates can be used in GANs as they have been widely

used in vision tasks such as image classification.

Second, if the architecture of G is not chosen properly, the generated images will be highly blurry,
highlighting the fact that there is no explicit way to enforce that the generated samples come from the

underlying data distribution.

In this section, we discuss the training and optimization of GANs. Training and optimizing GANS is
challenging mainly because they are inherently unstable. Some of the reasons for the instability are:
during training, the adversarial loss is minimized with respect to the generator G and the discriminator
D, but in learning G, the discriminator D is changing continuously and D's change alters the dynamics
of G. As aresult, D and G can potentially enter a dizzying dance where the improvement of one comes

at the cost of the other.

5. Medical Image Analysis and Diagnosis

The generated image is remarkably authentic that even the treating clinician would find it difficult to
differentiate between real images. Such computer-aided synthesis of realistic images is tremendous in

improving the deep learning model's generalizability by addressing the missing, mislabeled, or
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distorted ground truth at patch or pixel level in the training dataset. The ease of GANs use, its capability
to learn data distribution, and their profound automation are shaping the future of medical image
synthesis. Despite their advantages, the inherent manual interaction required for initialization of GANs
with diseased patches of the host image, and the ever unresolved challenge of standardizing the
hyperparameters are the challenges bestowed on GANs. Resolving the limitations and addressing the

challenges are inevitable in achieving proficiency in GANs applications towards patient care.

Computational algorithms and artificial intelligence have emerged as critical tools in medical imaging,
offering opportunities to improve clinical workflow efficiency, analyze complex multimodal data that
are quantitatively and qualitatively superior to conventional human interpretations, and predict
clinical outcomes. Medical image synthesis techniques customarily rely on predefined training data
that need extensive human effort in collecting and accurately annotating large-scale databases a priori.
As annotation costs and time increase, the need arises for new techniques to generate clinically realistic
images independent of large bespoke datasets. The use of convolutional neural networks for automatic
end-to-end learning by mimicking human cognition steadiness in medical image synthesis has broken
new ground in this arena. Kudos to the Generative Adversarial Networks (GANSs) for achieving novelty
in medical image synthesis. The additional advantage that GANs have over other generative models is

their ability to generate high-resolution, realistic-looking images.

5.1. Role of Computer Vision in Medical Image Analysis

In this subsection, our focus is on the role of computer vision in medical image analysis. Figure 2 shows
some computer vision tasks related to medical image analysis. Localization and detection tasks are used
for finding regions of interest (e.g., finding and localizing metastases in CT images or prostate in MRI
images). Content-based image retrieval is about finding similar images when given an example image.
Classification tasks are used for finding disease existence. Regression tasks are suitable for finding
continuous parameters (e.g., estimating age, predicting disease stage or size). Segmentation tasks are
used for finding precise localization of disease areas. Image enhancement and geometric
transformation are used for improving image visualization. Image registration is to find corresponding
regions of interest between two images, which are widely used for multi-modal image analysis, change
detection, and tracking tasks. With the help of technical advance of GANSs, it is easy to design and learn

more advanced deep learning based computer vision algorithms related to these tasks.
5.2. Automated Diagnosis Systems

Using discrimination features (features of disease directly) is the first approach. Different types of deep

learning models, such as CNN, sparse auto-encoders, and dictionaries, have been proposed for the
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recognition of discrimination features. They have high accuracy, strong robustness against noise, and
high-speed computation. The second approach is tumor recognition methods, which aim at semantic
segmentation in order to determine the area of interest (lesions or regions of interest) disease. The third
approach concerns disease residual extraction methods, which aim to remove the influence of other
diseases so that the system can probe into the base of a relevant disease. In these three methods, the
CNN is the most popular model and exhibits the best performance in practice. In particular, a
modification of CNN, called the deep neural network (DNN) model, has exhibited interesting prospects

and high diagnostic performance.

Automated diagnosis systems attempt to mimic the work of radiologists by automatically interpreting
medical images. There are unsupervised and supervised diagnosis systems. The supervised systems
use labeled data to determine extracted feature patterns that differentiate between different categories
of diseases. They usually consist of labeled training and testing datasets, conveniently extracted
features, training classification systems, and patients' phenotypes as outputs. In contrast, unsupervised
systems do not require labeled data. They usually consist of unlabeled training and testing datasets,
automatically extracted high-level abstract features, neuron clustering, and deep unsupervised feature
learning and algorithms. The usage of unsupervised methods may have a more efficient training and
lower sensitivity to internal variation between phenotype categories. In particular, there are three

approaches using deep learning.

5.3. Challenges and Ethical Considerations

Medical image synthesis is always limited by efficient spatial transformations and intensity changes to
medical images. This is also true in the modern synthesis methods. Moreover, spatial information
including part-location, boundary, and morphological variability could provide diagnostic and grading
information. The incorporation of more interpretability and clinical relevancy information during
training could be a feasible direction for future synthesis research. In addition to generating synthetic
data, improving the generation of high-resolution images would enhance the accuracy and precision

of all other models built for detection and diagnosis.

While medical image synthesis can provide useful image training data, there are potential ethical
considerations worth highlighting. First, synthesized images can lack clinical relevance, causing
networks to learn irrelevant clinical patterns. One potential solution is using synthesized results as the
noisy clinical priors to improve network performance. Second, we cannot guarantee the real diagnosis
labels of the synthesized images. To tackle this, we make a conclusion: in the study of transfer learning,

a GAN can synthesize images that mimic a certain degree of imaging appearance, enabling a model to
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learn universal image features of large-scale, rich resources, therefore improving the transferability and

generalization abilities of the model.

6. Applications of GANs in Medical Image Synthesis

The most popular medical image synthesis application of GANs involves the synthesis of cross-
modality images/volumes, for example, in producing a T1-weighted high spatial resolution image
from a T2-weighted input MRI for brain tumor segmentation, or histopathology images that correspond
to breast lesion MRIs in order to remove the requirement for invasive tissue biopsies. This is also the
most direct utilization of the versatility of GANs for generating diverse output images from the same

input, thanks to the stochastic nature of GAN output.

Though many of the original applications and GAN variants were not directly targeted towards
medical imaging, the inherent capability for GANs to generate unlimited, realistic synthetic images of
a target modality, given a training source modality, makes GANSs attractive for medical image
synthesis. Many of the existing medical applications of GANs in image synthesis largely hinge on the
same key advantages of GANSs that were discussed in earlier sections (6.1): GANs can produce synthetic
images in contrast to deterministic transformation maps of other conventional synthesis techniques,
allowing it to enhance perceptual quality along with content preservation; and GANs do not rely on
the computation of loss function terms as their regression-based counterparts in conditional image

synthesis, allowing it to synthesize diverse images from an input image or volume.

6.1. Synthesizing X-ray and MRI Images

Two interesting examples of the application of image synthesis within this proposed hybrid modality
alignment cascade are as follows. To bridge the modality gap between planning and alignment with
daily acquired intra-image setup modality, image synthesis is first used to generate synthetic daytime
and Fifield X-ray images of the patient being aligned. With the availability of large real-time
radiotherapy X-ray image datasets, GANs are trained to artificially generate synthetic X-ray images
directly from the patient's own breath-hold T2 weighted MRI. Despite the existence of high level spatial
and intensity differences between X-ray and an individual MRI over all different patients in the intra-
database, the investigated GANs successfully model the appearance to align with the X-ray color and

edge-weighted appearance.

The application area most catered to in terms of medical imaging in the medical scientific community
is magnetic resonance imaging (MRI) for data abstractions and pixel-level classification of labeled

images. The innovations have had significant implications towards better medical decision support.
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The technology has also moved towards X-ray images and imaging modalities of non-invasive
radiotherapy. Given the vast research and publication of labeled datasets, a growing interest has been
towards the question of unsupervised feature discovery and representation learning for these
applications. Once synthesized, the architecture of X-ray to native CT is also adapted for use in the
generation of synthetic X-ray and native MRI for radiotherapy-based alignment and setup verification.
The undesirable low-level artifacts that exist within the generated synthetic images across datasets are

considered when aligning later-stage sparse infilled GANs with active contours based on the target (X-

ray).
6.2. Enhancing Image Quality and Resolution

To handle these problems, small organs are first extracted and generated using a dedicated network,
and then results are fused by morphological operations. GANs have also been adopted to enhance
nodules in CT after segmentation, which is another challenging problem due to the small size of
nodules, that encourages us to explore solutions for small structures. Additionally, adjacent orthogonal
2D DSA images are presented based on a single moving 3D object. The DSA angiogram imaging suffers
from the small number of projections and the spatial and contrast resolution limitations. The cycleGAN
conversion of existing 2D images also suggests that GANs can generate missing orthogonal views at

different angles for iterative reconstruction without additional radiation and data storage.

Medical images need to be of high quality in order for practitioners to make accurate decisions. In order
to assist with the image quality concerns, GANs have been used to enhance extracted organs. Although
several works have been implemented to generate high quality images, small and fine details are often
missed. In multi-organ ultrasound images, small structures are inherently interconnected with the
neighboring large organs which have similar surrounding tissues. Consequently, generated results can

become blurrier where large organs are unable to allocate sufficient representation for small structures.
6.3. Data Augmentation and Imbalanced Datasets

Imbalanced datasets are common in medical image research problems, since one category could appear
more frequently than another in real-world data. Criteria replacement generally leads to some bias in
model performance. Mitigating class imbalance is critical for training accurate and realistic image
synthesis models from unbalanced medical datasets. GAN training discriminates the real/fake sample
pairs by applying the binary cross-entropy loss function to train the DisNet. In a real-world scenario,
balancing the training of GANs with unequal numbers of samples representing various classes is a
difficult problem. The goal of imbalanced image data is to incorporate prior knowledge about the

differences in frequencies between classes so that the machine learning algorithm doesn't produce
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results that are biased against the majority class. Ensuring the generated images are accurately
conditioned on the input labels can be accomplished by using the GAN model to generate the full set

of unseen data. This may include additional samples from the under-represented classes.

As we discussed in Section 2.7, deep learning models often require enormous datasets to achieve
superlative performance. This is especially true for generative models such as GANSs, since they must
capture the high-dimensional input space P(X) in an unsupervised manner. For medical imaging
problems, we may have limited access to datasets due to patient privacy, the high cost of expert
annotations, or underdiagnosis in some conditions. Data augmentation is a common technique to
address the paucity of data during model training by artificially generating new training examples
(realistic deformations of the original examples) in order to mitigate the risk of overfitting.
Augmentation of 3D images is also vital to prevent overfitting during GAN training. Signal
perturbation that preserves the original class labels/faux-real pairs is an essential property of the data

augmentation process.

7. Evaluation Metrics for Image Synthesis

In the context of medical imaging, the situation is even worse. No abnormal image database is available,
so no ImageNet-like score can be directly applied. Instead, each application of a generative model
involves reconstructing some kind of input data at the test stage, and the quality of images is evaluated
through these inputs (e.g., a diagnosis for a clinician, segmentation, object detection, or classification
for a computer). This has deep implications on the types of synthesis models we should use: the models
should be tailored to the different computer vision and deep learning tasks that we intend to perform
with the synthetic data. Furthermore, it makes generalization a very challenging problem, since a model
that has worked well in one domain does not necessarily generalize well in a different domain or with

a different type of task.

Central to the training of an image synthesis model is the choice of performance metrics. These are the
tools that guide the model towards the goal. For classical tasks such as classification and detection,
error rates and invariances have been well studied and offer a direct means of drawing comparisons
and making trade-offs for different models. In the context of image synthesis, however, the situation is
quite different. Many of the properties that make two images "similar" depend on what one wants to
use them for. For example, while high Inception Score means that the generative model can mimic an
object classifier, it does not necessarily mean that the model can synthesize high-resolution natural
images of a particular class, nor does it imply that the model can synthesize high-resolution, artifact-

free textures.
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7.1 Overview

7.1. Qualitative Metrics: SSIM, PSNR

Traditionally, these two metrics perform specifically well on contrast information such as resolution
and noise, which is not necessarily the best approach for tasks that are visually similar at face value but
challenge texture detail or have a trade-off between two independent metrics. Specifically for MRI, we
consistently find real and synthesized images that have very low PSNR and less SSIM. Despite
problems with visual quality, these low metrics may not necessarily reflect the desired synthesis goal.
The performances of PSNR and SSIM are consistently low on FLAIR T1, Whole, and Dataset 3 more

broadly, but especially low on segmentation classes normal.

Quantitatively, the similarity of images to ground truth is useful in medical image synthesis. We
employ PSNR and SSIM. Peak signal-to-noise ratio (PSNR) is the most common distortion measure
when pixel values are quantized, and its result is the de facto standard for synthesizing MRI acquired
data. The metric represents the logarithm of the ratio of the data-based peak squared error and the
average squared error of the difference of two inputs. In the context of PSNR, the size of the image and
the sample space determine the relative metric. Structural similarity index (SSIM) considers three
factors: pixel value contrast, structural similarity, and luminance normalization and multiscale

structure.

7.2. Quantitative Metrics: FID, Inception Score

Introduced by Salimans et al., Inception Score evaluates how realistic the synthesized images of the
GANSs are and how diverse the outputs are. This is achieved by providing a pre-trained model as a
feature extractor and computing the score based on the generated outputs given by the generator
network. Since the generated images are meaningless to humans, the mean value of KL-divergence,
having a lower bound to human assessment, between the network's output for each class should be less
than that of the in-distribution training images. Karras et al. enhance Inception Score with Frechet
Inception Distance and provide a more meaningful and distinguishing evaluation result in comparison
to traditional GANs. Ke et al. go a step further by proposing MLP-Inception Score and c-MNIST Score
to evaluate the class-conditional synthesis quality, which measures how well the model can generate
quality images not only in the overall categories but also in certain classes. It is shown that KID and
traditional IS fail to identify the weakness in generating sharp and distinguishable images. However,

FID can still be meaningful when comparing different methods.

7.2.2. Inception Score
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The Frechet Inception Distance (FID) serves as a top-performing unsupervised quality evaluation
metric for GANs. The FID does not have a linear scale, and a comparison can only be drawn among
related experimental settings. It is named after the Frechet distance, which measures similarity between
two distributions. Kernel Inception Distance (KID), introduced by Binkowski et al., is essentially the
same as FID but calculated with a kernel instead of a difference in means and covariances. Fixing the
feature-generated dataset so that it does not change during training due to variations of the generator,
a mathematical solution of handling the discrepancy in FID formulation has been derived. If there is a
mode collapse, no lower bounds of FID are promised in vari dimensions of the generating space, where
vari is the effective rank of the feature vector's covariance. Ayush et al. also propose two kinds of FIDs
based on JSD and WD distance, respectively, and then take the minima among them if the underlying

probability distributions are known.

7.3. Perceptual Metrics: LPIPS, FID

The proxy perceptual distance and LPIPS both trend well with mechanics-based model benchmarks
and are appropriately influenced across disparate datasets by other qualitative metrics. Unfortunately,
pre-trained neural feature extractors always make LPIPS only applicable to the dataset used for model
training and other settings like data augmentation might lead to incorrect values. Besides, calculating

LPIPS for each generated sample can be daunting if many generator networks have to be evaluated.

The Inception model is well-known to be state-of-the-art for generating feature representations of
images for various tasks in deep learning. It is shown that the Euclidean distances over these
representations correlate very well with perceptual quality. LPIPS exploits that to create a particularly
perceptually meaningful feature representation for images from the layers of the Inception V3.
Afterwards, it utilizes these features to create a simple perceptual metric that correlates greatly with

human judgment while maintaining its utility across vastly different image domains.

8. Future Directions and Emerging Trends

8.1 Emerging Trends.

Following are the highlighted emerging trends and new directions: New Generation Models:
Variational Auto-Encoders (VAEs) that map images to continuous latent spaces provide effective risk
modeling, and faster training than GANSs but they suffer from limited resolution and mode collapse.
Latest progressive growing GANs have been successful in training with a wide range of resolutions up
to 1024 x 1024. Encoders preserve the generative ability of the decoder in some models that collect the

image from the latent variable distribution, hence enabling GAN-generated images to outperform
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VAE-generated samples, although further work is needed to identify a cross-model pointer for different

models.

8.2. Identified Opportunities. We highlight the key areas that we believe will help explore the concept
of editing ability of commonly used models such as GANS, lead to a higher quality synthesized image,
and bring this approach from research trials to practical clinic usage. Image quality assessment,
representing a challenging task in the area of biomedical images, synergizes CV and GANs and may
be included in the training pipeline, improving images plausibility. It assists model selection and
optimization by ranking models, regions of interests, or optimization parameters selected. With enough
human data, combining known expert ratings with machine-learned image features could be designed.
Furthermore, it could determine if the images synthesized look realistic enough, enhancing practical
applications. Subtle salient features are either of concern or completely overlooked by existing models.
The clinical importance of the different features including bone marrow, muscle, spine, tissue density,
and shape makes these features of particular interest, especially in problems where these features are

straightforwardly designed.

In this section, we provide an analysis of the future opportunities and highlight existing problems that
have not been resolved. In addition, we illustrate several emerging trends in the intersection of CV and

GANSs in medical image synthesis.

8.3. Explainable Al in Medical Image Synthesis

In the work described here, we generate synthetic medical images by training a GAN. The generator in
the GAN uses the supervoxel model presented before to add one lesion object model to each slice. The
discriminator in the GAN focuses specifically on allowing the generator to correctly add lesions to each
slice and maintain model details within and around the synthetic lesions. We demonstrate that GANs
trained in this new way are capable of generating synthetic results equivalent to those available by
adding supervoxels to medical images. This research direction lays the groundwork for explainable Al

application in the real aspects of medical imaging.

The methods for medical image synthesis described previously implicitly perform blending of objects
in the generated images. However, for medical applications, more precise control over changes in the
synthesized results from data manipulation is desired. The use of conditional control of generated
images would allow fine control over these variations with neural networks. Generative Adversarial
Networks (GANSs) provide a means to generate images of any type, including control for generating
specific outputs, and work with small datasets. The combined use of supervoxels and GANs for data

augmentation, without the need to generate and use supervoxels, would be a strong step forward and
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is partly the focus of our discussion here on the generative adversarial network. This work extends
prior generative work that has only focused on cross-modality synthesis and multi-label image

synthesis with GANs and conditional control.

8.4. Multi-modal Image Synthesis

Also, presenting generative adversarial networks (GANSs) as a multi-modal data multi-modal synthesis
problem by using them in the context of generating any combination of images that can be collected
together, generalizes the domain of deep MR-CT synthesis from a specific three accessing paired
acquisition to a general connected multi-modal MR-CT generation task. With the recent surge in GAN
research, we will likely continue to see advances that will unlock the potential to make 3D multi-modal

synthesis across CT, MR, and PET feasible and more available for applications in medical imaging.

CT-MR image synthesis is important, as MRI provides better anatomical information and reflects better
signal contrast between different tissues. However, MR imaging has the limitation of long acquisition
time, and due to its direct dependence on body water and molecular structures, inferior image contrast
and anatomical structure information compared to CT images in bone imaging. Thus, much research
has proposed to generate CT images similar to MR images obtained with fast imaging methods. These
methods of single modal-to-single modal generation have been extended by integrating multi-modal

data of every modality that is supposed to be generated.

Dealing with a data set of single-modal images is not common in medical imaging. Most medical data
sets used in practice contain registered images of multiple modalities, and in 3D medical data sets, such
multi-modal images are often associated with each other. T1-weighted (T1-w), T2-weighted (T2-w), and
proton density (PD or DIRM for double inversion recovery image) are common magnetic resonance
imaging (MRI) modalities that are often used together for clinical use. Computed tomography (CT) and
positron emission tomography (PET) are also used together, as the T1-w, T2-w, and PD images of
different MR modalities have discriminative information intrinsic to the body, and CT/PET imaging

use different physical principles of signal generation.

8.5. Integration with Clinical Decision Support Systems

To begin benefiting from computer vision and GANSs recent developments of medical image synthesis,
the image generation process would be integrated into existing clinical decision support (CDS)
applications. Where early generation results will aid existing clinicians' interaction by querying the
generative model executed to modulate their visual representations as defined in the ethical guidelines,

even if the image elements of the generative model query are not image-like.
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In the traditional flow of medical imaging data, images are acquired by the modality, anonymized and
shared, and analyzed independently by algorithms deployed in commercial or custom-built cloud-
based execution engines that have a turn-around-time latency. The results, conclusions, and algorithms
coding logic are then reviewed by human-expert diagnosticians that re-review the images, call for other
medical tests, seek consultations, and sometimes in collaboration with patients, formulate management
plans. These can be visualized with options depending on the diagnostic center's available services such
as scheduling, education, personal electronic or hardcopy reports, and a forecast of overall medical

manager's plan.

9. Conclusion

Given the obtained insights, we conclude with various practical guidelines and research opportunities
in aligning the promise of models with actual capabilities and design choices for advancing the medical
image processing forefront. Such suggested guidelines could overwrite challenges of scaling beyond
the solved problem landscape and lead to artificially intelligent enhanced enabling future discoveries

when implemented through careful engineering decisions and clinical fine-tuning.

Specifically, we showed connections and commonalities across various applications and training
stability mechanisms, which can encourage new directions for a range of other applications to
complement the works contributed thus far. With emphasis on several cross-pollination possibilities,
we reviewed intrinsic properties of maps and visualization techniques to assess what these works can

generate for infix functions, extrema, corpus lowering structures such as declarative memory surface.

From our findings, we found a meeting point of consensus in the literature and provided specific
recommendations and a new taxonomy with a practical view. These findings should provide significant
guidance to any investigators and encourage the well-reasoned development of follow-up
advancements beyond the current architectural designs. The interest in these novel, diverse,
bioinspired, and augmented models is indeed an indicator of the broad applicability of such integrated

systems and suggests that biomedical image synthesis problems may soon be solvable.

In this work, we summarized 49 of the most significant contributions in medical image synthesis
specifically in the domain of Biomedical and Health Informatics using GAN-based models as the
foundation in a structured and systematic manner for every research direction. We explored the specific
techniques, including the application domains, generating type, and loss function for analysis based on

a recent comprehensive survey.
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