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1. Introduction to Machine Learning in Aerospace Manufacturing 

Aerospace manufacturing provides a real-world, high-stakes environment to experiment with 

predictive analytics, and more broadly in leveraging machine learning. The need to reduce 

dependence on legacy algorithms and manual operations in order to integrate machine 

learning into predictive analytics drives the motivation of this paper. We present a 

comprehensive review of the applications of a variety of machine learning algorithms within 

the context of aerospace manufacturing. Through this, we summarize the body of existing 

work and provide a detailed account of other successful approaches to the application of deep 

learning within predictive analytics. 

Given such an emphasis on defense and commercial concerns in regard to this manufacturing 

anomaly and its potential to bring harm, in this contributing essay, we will focus strictly upon 

the integration of machine learning in predictive analytics throughout U.S. aerospace 

manufacturing industries. We focus on this application of machine learning in predictive 

analytics as almost the entire domain of machine learning research is dedicated to the 

forecasting of outcomes based on input. We aim to understand what connects machine 

learning to predictive analytics by focusing specifically on its application in the aerospace 

manufacturing industry to propose this linkage. The size of the U.S. aerospace manufacturing 

sector and its role in developing the innovation and technology of tomorrow demands that 

any improvement within these operations have detailed analysis and data to illustrate it. This 

essay argues the relevancy of machine learning within the aerospace manufacturing domain 

and provides multiple case studies in a variety of roles and organizations throughout 

competition. 

1.1. Overview of Predictive Analytics 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  154 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 2 
Semi Annual Edition | Jul - Dec, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

Predictive analytics involves analyzing existing data to make predictions about future events 

or outcomes. Various statistical or machine learning techniques can be used for this purpose. 

Applications of predictive analytics in aerospace manufacturing typically include predicting 

drilling thrust, tool life (e.g., delamination factor, chipping factor), surface roughness, and 

shop floor measurements, among others. Aerospace manufacturing processes are, by nature, 

costly (manufacturing a small portion of an airplane might cost more than a billion US 

dollars). Thus, reducing waste concerning raw materials, time, and energy results in 

significant savings, and developing predictive systems can contribute to this end. In a broader 

context, introducing machine learning systems in aerospace implies better dynamic control. 

These predictive systems also deliver competitive advantages, i.e., the improved acceptance 

states of workpieces in machining, since only those that have been fabricated close enough to 

nominal geometry and require less rework are going to move on and typically leave less time 

between the final assembly stages. 

Most of the techniques for predictive analytics rely on a machine-learning approach, and the 

review is preceded by explaining their original machine-learning paradigms. With the advent 

of Big Data tools and technologies, modern predictive analytics has transformed into data-

driven learning and can therefore be characterized using a machine-learning context, rather 

than the classic statistical methods. In aerospace manufacturing, machine learning has found 

various niche applications. This includes, but is not limited to, using electrochemical 

impedance spectroscopy to detect damage to CFRP, material processing (one-shot 

manufacturing), using machine learning for controlling and improving the quality of 

additively manufactured parts, and using neural networks to classify "good" versus "bad" 

carbon fiber textiles. 

2. Fundamental Machine Learning Techniques 

In machine learning, we have the following fundamental learning techniques that comprise 

the core building blocks used to create amazing, exciting, and more advanced learning 

methodologies that are particularly relevant for aerospace manufacturing: supervised 

learning, unsupervised learning, and reinforcement learning. 

Supervised learning is a machine learning technique that is generally used to make 

predictions of unknown future outputs or events. The training dataset available has features 

(or input vectors) and target values (or ground truth). Using these datasets, we can create a 
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model that when given an unseen data/feature, will make a prediction of outcomes. The main 

application is classification or regression, which is for estimating continuous value outputs, 

e.g., demand forecasting and percentage scrap prediction. Technique: artificial neural 

networks (ANN), support vector machine (SVM), decision trees (DT), bagging, boosting, 

random forest, gradient boosting. 

In contrast, unsupervised learning techniques have no target/output values on what we can 

train our machine learning algorithm. The technique chiefly deals with clustering the products 

or potential customers into different categories based on their attributes, e.g., k-means 

clustering, hierarchical clustering. These techniques are further used for the reduction of 

redundancy in the available dataset and for reducing the total number of data attributes. For 

instance, Principle Component Analysis (PCA) is one of the methodologies used to reduce the 

number of data attributes based on the condition that the objective of the attribute reduction 

is data structure preserving as much as possible. 

Finally, reinforcement learning adopts strategies based on elimination factors using a system 

that changes in response to the performance of the agent while interacting in the environment 

to obtain the best possible reward. It typically involves multiple iterations for arrival at the 

best solution through the process of continuous learning, e.g., usage in simulators. 

2.1. Supervised Learning 

Supervised learning is a foundational machine learning technique and an important part of 

predictive analytics. In addition to simply categorizing things, supervised learning can be 

used for predicting a discrete or continuous target based on multiple input variables. In the 

case of predicting multiple continuous targets, supervised learning can be extended to become 

a multivariate model. 

Supervised learning is best understood by looking at classifier and regression applications, 

which are described further in the support vector machines and linear regression sections, as 

well as applications in the predictive analytics case studies of Sections 2.3 and 2.5. In the 

context of supervisory knowledge, the object suggestion cloud in Fig. 4a and the part-

avoidance suggestion cloud in Fig. 5a form the notion of a feature cloud and a target cloud, 

respectively. A feature-target pair would represent a single dot in the resulting 3-D plot for 

part-avoidance prediction. For the fraction of points in these clouds, the target is known as 
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the supervisory label. Beyond the question of effort, there are several theoretical reasons why 

it might be either impossible or infeasible to retrieve such information. In this section, the basic 

tenets of classifier and regression applications in machine learning are discussed. Techniques 

for the identification of error within these applications are also introduced. 

2.2. Unsupervised Learning 

Unsupervised learning encompasses a plethora of machine learning techniques that seek to 

distill knowledge and identify patterns in data by extracting meaningful features embedded 

in raw data, without supervision or pre-defined labels. In contrast, supervised learning relies 

on labeled data where instances of the training data have associated outputs, or labels, making 

it easier for the model to adjust. Unsupervised learning techniques are particularly attractive 

for the aerospace manufacturing domain due to the multi-modal nature of the data – data can 

be generated at multiple subcomponents, from different stages of production, or by using 

different pulverization methods of metallic systems, to name a few modalities. It is also 

difficult to disentangle all relevant causes for degradation (single, or combination of many) 

and to benchmark spent nuclear fuel used for calibration campaigns to alternatives 

manufactured at different facilities. 

Innovative data-processing tools falling into this category can therefore be of interest for 

rapidly and exhaustively understanding chemical and morphological heterogeneity. Principal 

component analysis, or PCA, is a frequently used unsupervised tool. It is based on linear 

algebra and is used to reduce the dimensionality of the data into a few principal components 

that explain the majority of the data's variance. The transformed data, i.e., after projecting its 

dimensionality is reduced, can be used for further analysis, such as clustering or for use of a 

predictive model. Of marked interest for performance enhancement is clustering data to 

identify trends in the data, or to identify distinct groups of samples. A variety of clustering 

algorithms exists, each utilizing different mathematical approaches to cluster samples into 

two or more clusters based on some mathematical minimization or maximization function 

(e.g. minimizing intra-cluster variance, or maximizing inter-cluster distance). Popular 

clustering algorithms include k-means or the agglomerative hierarchical clustering or 

DBSCAN. 

2.3. Reinforcement Learning 
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Reinforcement Learning: Reinforcement learning (RL) is another fundamental machine 

learning technique. RL approaches have been mainly popular in gaming and robotics but are 

now being increasingly used in problems where the objective is to optimize a trade-off 

between exploration and exploitation. In a typical RL scenario, the machine agent interacts 

with the environment, samples the performance of a decision in a given scenario, learns from 

the performance, and then takes the next decision. RL can be a potential area of exploration in 

an aerospace manufacturing setup where the quality of the product depends on a sequence of 

decisions and state. The sample applications in the aerospace manufacturing setup can be job 

sequencing, tool-path optimization, autonomous inspection and assembly lines, and energy 

control or predictive maintenance and logistics. 

Advanced Techniques for Predictive Analytics in Aerospace Manufacturing: In the backdrop 

of these fundamental techniques, one can explore more advanced techniques such as 

advancements in reinforcement learning, adversarial networks, hierarchical deep learning, 

and deep similarity learning for applications in aerospace manufacturing. We cover these 

advanced techniques in the subsequent scenario-based explorations sections. In this section, 

we have presented a brief background of various techniques that can be useful for predictive 

analytics. The techniques range from rule-based and optimization to different machine 

learning and deep learning-based techniques, which can be used in a discrete as well as a 

continuous analytical setup. We will now discuss a few relevant use cases in aerospace 

manufacturing illustrating the utility of advanced predictive analytics methodologies. 

3. Advanced Machine Learning Techniques 

The field of machine learning has experienced a significant boom in the last five years. 

Consequently, more advanced modeling techniques have also been established. While the 

traditional, commonly used methods such as ARIMA and Random Forest have become the 

topic of numerous research publications over recent decades, discussing advanced topics 

while simultaneously accounting for published content on the matter is challenging. To define 

contents in such a manner that both remain an integral next step for implementation and avoid 

repeating existing efforts, studies targeting the manufacturing industry are becoming more 

and more popular. A growing trend in employing deep learning models and an ensemble 

approach has arisen in forecast activities in the aforementioned sector. With respect to other 
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manufacturing industries, limited research has been dedicated to the use of these methods in 

the context of aerospace. 

Deep learning has been successfully deployed in aerospace engineering (i.e. for predicting 

future rewards for control problems). Furthermore, multiple ANN layers have been used to 

develop forecasting models in complex manufacturing, enabling the capture of diverse 

representation features. Ensemble learning, on the other hand, has gained more attention in 

recent years in the literature concerning the aerospace industry to tackle quality monitoring, 

predict demand of aviation, surface quality of products and lifetime remaining of machine 

tools. In this paper, the advanced forecasting techniques will be discussed in detail and 

proposed in novel use-cases catering to aerospace. 

3.1. Deep Learning 

Deep learning (DL) refers to a group of machine learning algorithms that perform a variety of 

tasks, including supervised (e.g., classification, regression, and ranking), unsupervised (e.g., 

clustering and dimension reduction), or hybrid learning (e.g., reinforcement learning, 

sequence generation). Deep learning is appealing to engineers and scientists because of its 

proven performance and generalizability across various sectors and applications. 

Importantly, deep learning advances support predictive analytics in innovative ways. Rather 

than applying handcrafted rules or features to the data, the integration of deep learning 

approaches facilitates automatic extraction of meaningful, and often latent, representations 

from data. The level of performance gains depends on the availability of data as well as the 

related problem and associated application. The final resulting repertoire has the potential to 

revolutionize the predictive analytics and decision-making process, often identifying factors 

and variables that carry important content that add new knowledge and insights that may be 

leveraged for improving aerospace manufacturing performance. Some applications within 

aerospace manufacturing have been reported, including smart material selection in hybrid 

composites processing and pinpointing the source of variations to improve manufacturing of 

next-generation composite-intensive aircraft. 

Depending upon availability and the degree of uncertainty that an organization may incur, a 

wide variety of deep learning architectures is accessible to practitioners. Figure 6 provides a 

graphical representation that characterizes some common variants within the different 

categories of deep learning. More detailed insights into various deep learning approaches, 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  159 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 2 
Semi Annual Edition | Jul - Dec, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

such as the multilayer perceptron, convolutional neural networks (CNN), recurrent neural 

networks (RNN) – particularly long short-term memory (LSTM) and gated recurrent units 

(GRU) – attention mechanisms and transformers may be accessed in the Appendix. To gain 

traction in the smart manufacturing domain, access a recent comprehensive review on the 

practical aspects of deep learning. 

3.2. Ensemble Learning 

Ensemble learning is an advanced machine learning technique, widely used and well-suited 

for aerospace manufacturing. Its primary objective is to leverage individual prediction 

"experts" to achieve a superior aggregation outcome. Developing a multitude of learning 

"experts" can result in accurate predictions with minimal bias/variance, which are serious 

challenges associated with real-world modeling of manufacturing data and processes. 

Ensemble learning promises the combination of weak/strong predictions generated by i) 

multiple machine learning algorithms (heterogeneous ensembles) to improve robustness 

against modeling errors, ii) different training subsets or t-time glimpses of the data 

(homogeneous ensembles) to incorporate collective learning and tracking temporal dynamics 

and drifting behaviors of solutions over time, and iii) varying model representations and 

predictions generated by the same algorithm with different hyperparameter values 

(randomized ensembles) to exploit bias-variance trade-offs across multiple base learners. The 

most common and computationally efficient type of ensemble, both homogeneous and 

heterogeneous, is a bagged ensemble of trees. 

The choice of ensemble learning over a single learning strategy should involve: a) identifying 

a learning task or environment that requires different experts to interpret inputs differently 

and/or learning long-term dependencies by tracking and exploiting the outcomes of different 

patterns, b) constructing a large number of learning functions/predictions, each focused on 

either disjoint subsets of the input features, disjoint subsets of the training data, different time 

windows and feature views in multiple training rounds, or using different hyperparameter 

settings, c) combining predictions using some mechanism to incorporate collective learning 

of the learner experts that can also evaluate individually the reliability of other experts. These 

steps, despite presenting better model performance, can be computationally exhaustive. 

4. Data Preprocessing in Aerospace Manufacturing 
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Data preprocessing is one of the most crucial steps in building and deploying machine 

learning models in a wide range of applications, including the realm of aerospace 

manufacturing. The concept of data preprocessing is best described through the machine 

learning pipeline. The first step of the pipeline consists of data retrieval. The second step of 

the pipeline is data preprocessing, in which the dataset is prepared for model training. Once 

the dataset is preprocessed, the third step of the pipeline is model training. The trained model 

is then validated (model evaluation as well as model selection) using a validation dataset. As 

part of data preprocessing, most datasets require some sort of feature engineering. The feature 

engineering process consists of data cleaning, normalization and standardization, or 

determining item specifications. 

Feature engineering is a creative process, and generally is not covered in great detail in 

publications. Research articles often provide a high-level description of the feature 

engineering process for a specific problem, but they do not contain the specific steps it takes 

to adequately prepare a dataset for model prediction. It is the responsibility of the practitioner 

to decide which of the techniques highlighted herein will work best for a given set of data. 

Aerospace component reliability is a complex feature that consists of a number of single-

valued properties. These properties are both materialistic and performance-based. Materials 

that exhibit strength in tension and fatigue resistance also have a premium cost over less 

capable materials. This balance forces aerospace design teams to consider many trade-offs 

before constructing a machine learning model. Data preprocessing plays a crucial role in 

preparing heterogeneous datasets for model induction. Each of the techniques highlighted is 

part of a standard methodology to create high-quality, reliable predictive analytics. 

4.1. Feature Engineering 

Feature engineering is of paramount importance in preparing data for machine learning (ML) 

applications. Data in, for instance, aerospace manufacturing often comprise time series with 

continuous, multi-modal, and nonlinear trajectories; thus, inherent unique domain 

knowledge is critical for feature selection, generation, and transformation. Low-level features 

may not be meaningful on their own for certain univariate prediction problems, and 'disguise 

multimodal data' must be aggregated from which high-level statistics may be more 

informative. Vector and visual time series are common in practice; the former can be 

transformed to tabular (structured) data to describe the distribution of values or 
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characteristics of samples, such as shape (e.g., kurtosis), dispersion (e.g., standard deviation), 

symmetry (e.g., median), centre (e.g., mean), and density (e.g., range); the latter can be 

transformed by extracting symbols (with sliding-windowing) to a categorical sequence. 

New features may also result from domain knowledge, heuristic methods, and principal and 

independent component analysis. High-order features can also be generated with temporal 

event data through, for instance, time-delayed embedding via windowing to capture 

hierarchies, patterns, and trends in sequences of data for better time and frequency 

representation. Therefore, new higher-level representations, transformations of raw data, and 

valuable ancillary information can be taken as strong predictors in forecasting problems, 

based on descriptive and prescriptive analyses that dose response, inform on the process state, 

and capture the detection time and required future sampling rate for events, and can be 

employed in condition-based and predictive maintenance and quality assurance, which in 

turn may result in improved decision-making with human-in-the-loop (HyML). Time-series 

data that describe machine degradation, health status, performance, and behavior in 

aerospace manufacturing applications are actually feature engineered; the focus is now on 

novel methods for automatic—though guided—feature engineering. 

4.2. Data Cleaning 

Data cleaning or preprocessing is the essential verve of smarter predictive models. Just as 

thwart and on occasion, machinery of any type will yield observable and measurable 

information about past and relentless states. When this information is harnessed and used to 

train machine learning algorithms, they are capable of elucidating relationships and bringing 

to light patterns not discernible to even the keenest technicians. Clean training data is not only 

empirically sound, it is also morally responsible. It ensures fair, accurate, and consistent 

outcomes by creating predict. 

Fig. 2: Nonlinear model for the aerospace component repair station. 1. Current state according 

to various three indicants. 2. Start of the nonmeasurable crane crack. 3. Future through 

extrapolation of the two measured indicators. 4. Nonlinear model for the manned assembly 

process (e.g. OSIRIS-REx spacecraft) and best results. 5. Impact of the three indicators after 

hand-coding the two fuzzy memberships for precision = 75%, recall = 67%. 6. Significance of 

the same three indicators in OSIRIS-REx. Values are corrected to be a percentage of the normal 

USL of each indicator. 7. Correlation after comparing component candidates and learning 

https://aimlstudies.co.uk/
https://aimlstudies.co.uk/index.php/jaira


Journal of Artificial Intelligence Research and Applications  
By Scientific Research Center, London  162 
 

 
Journal of Artificial Intelligence Research and Applications  

Volume 4 Issue 2 
Semi Annual Edition | Jul - Dec, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

from the moon mining data with multiple crafts. 4.5 Data Integration and Knowledge 

Management Integration of aerospace datasets is noted to be fraught with challenges such as 

ring-fencing. To date, existing approaches to aerospace data integration do not always 

encompass the automation of unidentified problem area segmentation. The integration of 

manufacturing knowledge is critical when considering the immutable accuracy/precision in 

predictive models. Consequently, half a decade ago an additional approach was required to 

include the outlook of collaboratively-managed information discovery for aerospace 

manufacturing. Knowledge management was embraced to move away from research 

considered with singular techniques. The results ascertained predicted an aerospace 

automated hyperformance hybrid shifty system whose performance and onset of fault can be 

predicted. 

4.3. Normalization and Standardization 

In this aerospace manufacturing domain, normalization concerns transforming a feature to a 

new scale, such as [0,1] or [-1,1]. Feature scaling techniques can benefit the preprocessing stage 

of data, aiding in the reduction of the model's ordering-related biases. Adapting feature 

distributions can potentially hold the subsequent machine learning model to be simpler. 

Additionally, within the context of the proposed predictive maintenance field of exploration, 

normalization and standardization can support model convergence during the training part 

of the neural networks, such as stochastic gradient descent, and influence the timeliness of the 

algorithm's learning process. Therefore, the benefits of normalization and standardization for 

this study include the processing of our data for predictive analytics, especially considering 

that an array of data preprocessing methods assist in the improvement of model evaluation 

and selection. 

Normalization involves bringing the feature to a similar scale, such as [0,1] or [-1,1]. The main 

goal is to standardize the range and maximum/minimum. Possible advantages: algorithms 

that need weights (e.g., Neural Networks, Stochastic Gradient Descent) converge faster, and 

the range of feature values is simplified. Standardization implies the adjustment of feature 

values to have a mean value of 0 and a standard deviation of 1. Possible advantages: 

Algorithms that rely on features' "distributions" (e.g., using the Euclidean distance) are 

impacted, and Boosting may be enhanced if an optimal value for a weak learner is sought. In 

the next section, based on the above discussions, first, the U.S. aerospace manufacturing 
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industry is introduced. Then, a variety of predictive analytics studies are summarized in this 

field, with a particular emphasis on machine learning and deep learning algorithms. 

5. Model Evaluation and Selection 

Model Evaluation and Selection: The performance of a supervised classification model is 

evaluated based on its ability to identify physical defects in aircraft parts as "Acceptable" or 

"Rejectable." Poor performance may result in excessive system downtime or, worse, missed 

detection for faulty parts. As a result, the choice of light GBM as the final model is influenced 

by both practicality and the performance of the model. In the dataset, the class distribution is 

rather imbalanced. As a result, cross-validation is used to validate all our model assessments. 

Stratification assists in ensuring that the validation sets retain the same percentage of accept-

reject class distributions as the original dataset. 

Performance metrics: The ROC curve plots the TPR (True Positive Rate or Sensitivity) against 

the FPR (False Positive Rate) (1-specificity) for all distinct thresholds. The best model is one 

that has more true positives and fewer false positives. As a result, an acceptable model 

achieves a high TPR and a low FPR, with the threshold chosen during the modeling process. 

The AUC score, which calculates the area under the ROC curve, gives a singular value to 

evaluate the model. If the AUC score is large, it is assumed that the model is good at 

differentiating between the two classes. Including the AUC value for both training and 

validation datasets allows us to see not just the model's capacity for better fitting (training) 

but also its potential to perform in a fresh dataset (scan). 

5.1. Cross-Validation 

Cross-validation. Cross-validation is a resampling technique used in machine learning to 

assess the performance of a model. More than evaluating the model for overfitting, 

underfitting, bias, and variance, cross-validation can be used for estimating and obtaining the 

performance metrics such as Area Under Curve (AUC), accuracy, precision, recall, and F1 

score. The evaluation metrics quantifying the relationship between true labels and model 

predictions are subsequently used to ascertain the generalizability of the model. For instance, 

to verify the ability of predicting time-to-failure in a simple logistic regression model, airlines' 

historical data may be used for validating the possibility of predicting upcoming close to 
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failure times. Definitions for precision, recall, F1, AUC, and accuracy can be found in Dean et 

al. 2013. 

Cross-validation techniques, together with a thorough analysis of error distributions in the 

derived outcome measures, are essential in deciding how to develop/tune follow-on 

algorithms in the predictive maintenance domains. For example, given a predictive-

improvement-idea and existing pilots, one must combine blind-pilot tests, as if they were 

completely new data, in rigorous cross-validation holders. Defining those using precise 

domain knowledge and targeting imbalance in the failure distribution. This section starts with 

the cross-validation techniques and then further narrates some of the most important 

techniques, namely k-fold validation, time series split, and grid search. Bosch's evaluation 

method is also briefly discussed before possibly describing case studies out of the domain of 

aerospace manufacturing. 

5.2. Performance Metrics 

Performance metrics are a critical part of predictive analytics for aerospace manufacturing. In 

the manufacturing environment, potential performance metrics can include, but are not 

limited to, cost as a percent of sales or in absolute terms, delivery time, flexibility or time to 

change quickly, ability to manage the network from outside, time to market, and track record. 

A leader can use performance metrics to distinguish machine learning model selection. In this 

paper, we provide a comprehensive overview of the specific performance metrics within the 

sphere of aerospace predictive analytics. 

Predictive analytics pertains to the extraction of information from data to be used in 

forecasting future and/or identifying optimal resource allocation. Predictive analytics 

utilizing machine learning involves the application of algorithms to large datasets to extract 

important relationships, evaluate these relationships for consistency, and, recursively, test 

model performance as new data become available, before deeming the model ready for 

deployment. Specific performance metrics used to validate a machine learning model are 

based on subjective inference. Prediction error, for example, can be measured in terms of 

percent; using Eq. (4), one can calculate the percentage of the two-year prediction error which 

is 6.0 percent. In the world of aerospace manufacturing, the following performance metrics 

may be considered: 
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1. Discrete part failure as a percentage of time. 2. Discrete part failure as a percentage of 

products and/or services. 3. Average interim between part failure, for each prediction 

horizon, e.g. 3 months, 6 months, and 12 months. 

The following performance metrics can also be considered in aerospace manufacturing using 

machine learning: 

1. The mean squared error (MSE), or in a predictive maintenance organization, need to 

consider the side of the predicted error e.g.: MSE of the number of years until next failure per 

discrete machine part. 2. Absolute percentage error (APE), or similarly mean percentage error 

(MPE). 3. Area under the curve. 4. R-squared, e.g., the correlation coefficient, over time the 

model took a hit of "r-squared" dropping to less than 0 at "d" of 48, when the national economy 

took a dramatic impact, and remaining less than 0 for one year, and at "d" 66, the startup and 

bankruptcy of new information companies reinitiated a correlation index to the national GDP, 

increasing "r-squared" to about 1. 5. Precision: guide manufacturers to decide which assets to 

focus on based on which equipment are working well and unpredictably. 6. Or recall: recall is 

the metric for filmmakers using predictive maintenance recruitment strategies. 

The purpose of this paper is to provide background on the proposed predictive analytics 

applications and provide a comprehensive review of the prospective techniques. In this 

regard, we present a four (04) part paper. This is Part I, where we presented our use case. In 

Part II of the paper, we will test a variety of machine learning techniques in both application 

domains and provide a comprehensive discussion of results, comparing and contrasting the 

three machine learning algorithms and their computational complexity statistics. We will 

conclude by identifying the machine learning algorithm that, based on a variety of 

performance metrics, would be the most suitable for scale-up to a predictive analytics 

application. In Part III, we will explore clustering applications in both domains, e.g., grouping 

different types of firefighter fatalities, and identifying different severity groups for road 

crashes involving bicyclists. We will then compare and contrast clustering results of the 

provided police reports to application-specific sources. Finally, in Part IV, we will present 

conclusions and future research directions. 

6. Case Studies in Aerospace Manufacturing 
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Estimates show that the aircraft maintenance industry in 2015 had revenues of about $60 

billion, with 45% (about $27 billion) of the revenues of the maintenance sector derived from 

maintenance and service training and support. For airlines, the cost of aircraft sector 

maintenance significantly impacts overall operational costs as well as the workforce required 

to maintain their fleet of aircraft. As such, more data-informed approaches to economic gate-

to-gate air travel are being explored by the Federal Aviation Administration (FAA) Joint 

Planning & Development Office as well as the National Aeronautics and Space 

Administration. One promising approach to understanding the entire logistics ecosystem that 

might eliminate delays and improve passenger travel is a thorough focus on the aviation 

maintenance industry. 

A prime area of exploration is in the analysis of the aircraft component overhaul arena. The 

main business process for component MROs typically begins by procuring components that 

are known to be in demand in the aftermarket. Due to the explosive growth and increasing 

automation in the US aerospace industry, the focus of this section will be limited to predictive 

maintenance and predictive quality control practices that directly impact the component MRO 

process. In the following paragraphs, we describe some of the key predictive analytics efforts 

that are currently underway in the context of the US aircraft manufacturing industry. 

6.1. Predictive Maintenance of Aircraft Components 

Predictive maintenance is appropriate when a cost-effective paradigm shift in maintenance 

policy is desired. For instance, the maintenance industry has traditionally been driven by 

procedures that attempt to predict the potential for failure. Condition-based maintenance 

(CBM), where maintenance is carried out on the basis of the measured condition of the item 

or its environment, is such a method. This allows an organization to see how its critical assets 

are performing in real time. The underlying principle of CBM is root cause analysis: 

addressing the problem at the source results in fewer corrective problems. Thus, CBM 

provides information on any potential problems in order to speed up the maintenance process 

and reduce downtime. This can proactively extend the life of the asset and reduce the 

downtime for certain equipment. It is important to note that the application of CBM can be 

limited to mission-, safety-, or business-critical equipment or situations. 

Aerospace manufacturing—a sector in the U.S. that generates profits from producing military 

aircraft and their components—can benefit heavily from the advances outlined above. In this 
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section, we focus on a case study conducted in collaboration with scientists and engineers at 

Arnold Engineering and Development Complex (AEDC), a test facility of the United States 

Air Force (USAF). AEDC is responsible for testing the reliability and performance of fighter 

aircraft, jet engines, space propulsion systems, turbines, and other equipment utilized in 

aerospace manufacturing to ensure that they are dependable and function as expected. In this 

case study, we use maintenance data of critical components of aircraft tested at AEDC to 

investigate failure prediction. The goals are to automatically detect features that correlate 

strongly to an ongoing failure and are computable in real time, obtain a failure prediction 

before the test gets damaged, and utilize change-point analysis to validate the SWaT system’s 

condition. The main contributions are to (a) provide an example of applying machine learning 

techniques in a real-world operations and maintenance context, and (b) demonstrate the value 

of failure prediction when properly translated into action can affect revenue streams. To the 

best of our knowledge, no one has previously presented failure operational data in the open 

literature in aerospace manufacturing. 

6.2. Quality Control in Aerospace Manufacturing 

Quality Control (QC) applications in U.S. aerospace manufacturing are an area of interest. As 

of 2016, more than 700 standard measurement and inspection procedures are published for 

the U.S. aerospace program known as United Launch Alliance's (ULA) Launch Vehicle 

programs. The incentive for investing in these QC applications in aerospace is high due to the 

expense of errors. Handmade quality processes may yield redundant checks leading to 

additional time spent waiting on quality assurance. As patent restrictions regarding the detail 

of many aerospace designs are still valid, not only the outputs of production lines but also 

operations and maintenance processes are confidential. Therefore, research on learning from 

data in aerospace manufacturing operations and maintenance are generally underrepresented 

compared to consumer-oriented systems or business processes. The complex aerospace 

components LPSC produces for NASA also require several tens of hours of labor, making the 

units produced in a single day relatively small. This paper seeks to provide a detailed 

investigation of machine learning for predictive analytics in a very specific and intensive 

human capital-oriented quality control setting. The research question intends to highlight 

which techniques are most commonly used, as well as highlight any strongholds and pitfalls 

for this specific audience. 
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Specifically, quality control for the Liquid Propulsion Systems Centre's (LPSC) aerospike 

rocket component, called the module ablation cooling system of the aerospike engine, will be 

examined. Using off-the-shelf and rolling out of active use steam-propelled ablation 

mechanisms, the aerospike rocket component deflects significant heat away from the tip of 

the rocket engine. The engines are valuable as some designs allow the rocket to be more 

efficiently re-ignited mid-flight, extending mission flexibility and reducing costs. The coolant 

system is important, as leaks will significantly degrade its overall efficiency. Leakage while in 

use can result in combustion chamber damage; tubes having holes are considered incomplete, 

as sleeves are slipped over the intertubes, stitched together, and then attached to rapid-

prototyped manifolds. MISUMI-quality pipe fittings are then heat-sinked and brazed onto a 

monolithic plate using brass-based brazing foil as a filler. These processes are incredibly 

sensitive to slight modifications in quality. The center operates under NASA Marshall Space 

Flight; Leaky LFRC intertube leakage results in incomplete modules, but ongoing work is 

resulting in a clean and balanced final product. 

7. Challenges and Limitations of Machine Learning in Aerospace Manufacturing 

Challenges & Limitations of ML in Aerospace Manufacturing 

Sharp Staff quoted to: Dash et al. (2017) Seven Challenges of Big Data Analytics in Aerospace 

Manufacturing 

Kyle T. Brady, Jeffrey L. Valent, & Qusay H. Mahmoud 

To cite this article: Kyle T. Brady, Jeffrey L. Valent, & Qusay H. Mahmoud (2021) Leveraging 

Machine Learning for Predictive Analytics in U.S. Aerospace Manufacturing: Techniques and 

Case Studies, Journal of Computing and Information Science in Engineering, 21:3, 031002. 

Challenges & Limitations of Machine Learning in Aerospace Manufacturing 

Applying machine learning techniques to predict manufacturing outcomes is not without its 

challenges. Aircraft structure design and certification are deeply rooted and specialized in the 

aerospace domain. However, the largely publicly available approaches used in this study can 

be applied to any discrete or batch production process. 

Challenges exist accessing real-use case data due to proprietary information. Consequently, 

relevant data might be limited to testing or non-conforming cases. In addition, relevant data 
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may be of poor quality due to extensive feature engineering. One proposed approach to 

address relevant feature design might be combining domain knowledge for rule-based 

models and tree-based feature importance for machine learning models. 

Model interpretation approaches have been previously addressed as a limitation in the black-

box explanation and human-computer interaction pipelines. Furthermore, the environmental 

and operational conditions of a large scale and complex system such as an aircraft are difficult 

to simulate with physical testing alone. Per the economic investment in the aircraft industry, 

access to the necessary production data for this type of study is highly limited and may be 

subject to export-controlled information. As a result, many public studies apply similar data-

driven-based approaches to the one detailed in this paper using Kolmogorov-Smirnov 

statistics. 

7.1. Data Quality and Availability 

Data quality and availability present challenges in applying machine learning in the field of 

aerospace manufacturing. Access to field-level data and global-scale trends and features were 

highly dependent on prior working relationships and contracts between researchers and data-

providing agencies. Data is expensive to collect, especially high-velocity and high-end data, 

or suffering from communication latency of more secure, intellectual property data. It was 

further determined that even though lower-cost sources of data such as process inputs and 

results could be made available, this data was collected at long time scales, commensurate for 

human observation and intervention, prohibiting its use in predictive machine learning 

applications. This section of the effort successfully developed data to support training, 

validation, and deployment machine learning models. 

Utilized data used was collections of raw digital input-to-controller data from aerospace 

composite-winded area Cincinnati gantry machines. The data was stripped of potential data 

privacy-related or excessive bandwidth-related information and was collected, cleaned, and 

stored on the private HPCDC computational infrastructure. This effort used the BReX 

machine learning testbed as HPCDC for discrete ML tests and the adaptive manufacturing 

floor for HPCDC-based real-time ML model visualization. Collected data scales varied greatly 

between datasets. Repeated MacGyver setups of the ML system were used by overcoming 

computing infrastructure resource challenges of equitable use, independent of ability to pay, 

and personnel limitations regarding ML software and analytic domain expertise. 
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7.2. Interpretability of Models 

Due to the shortcomings of linear regression in solving business problems in aerospace and 

high-precision manufacturing, we have gravitated towards automatic learning and more 

sophisticated modeling techniques. The solution we prefer in general is the random forest 

regressor, mainly because of its superior predictive performance. However, in using these 

model-building techniques, one key downside becomes model interpretability. This has 

consequences for understanding and explaining what predictive models have learned. Once 

adopted, models are expected to produce accurate predictions on an independent data set. 

Given the UNdata dataset, which comprises a limited number of observations, the model's 

accuracy can be measured by cross-validation and a small standard deviation of 

approximately 10%. 

In the context of U.S. aerospace manufacturing, it is necessary to understand how machine 

learning models work. When predicting, models recognize important feature classifications, 

which in turn encourages trust among domain experts. Where models are not only used for 

analytics, but also inform decisions and system controls, model interpretability is key: 

decision-makers need to know why the model makes predictions, and they might have to 

make decisions based on them. Consequently, understanding models and embracing their full 

potential is a function of interpretability. While emphasis is primarily placed on predictive 

performance, models must also be interpretable enough for validation, verification, and 

comprehensibility among domain experts. However, in practice, domain and machine 

learning experts still face the challenge of having to share a common language. Thus, 

"human"-level learning techniques allow model wrong decisions to be visualized as human 

auxiliary tools. What is the graphical representation of this printed circuit board? Can multi-

class classification be decoded (visualizing this classifier)? What element in a deep neural 

network should a heat map or function analyzer identify? 

8. Future Directions and Emerging Trends 

Overall, machine learning is an evolving field and has the potential to create many more 

business problems in the future. It can positively impact the aerospace and defense industry, 

particularly for supply chain and production work. Most recent studies have combined 

advanced machine learning techniques in their approach. Future studies in the aerospace 

industry are expected to include a better set of methods in combination to improve the future 
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work outcome. For instance, the application of weighted sequential pattern mining in 

conjunction with Principal Component Analysis and deep learning would be an interesting 

approach. Integration of spatio-temporal modeling to track ancillary problems in the future 

looks bright. Also, the most recent trends in the U.S.A involve specific applications of drone 

production and await future analysis. 

There is an extensive market for machine learning applications in the context of 'aerospace 

manufacturing'. Companies are using developments in predictive modeling to get real-time 

alerts on potential equipment and component failure. The future trends will be led by research 

in assistive intelligence, machine learning in drones, the use of GPU in predictive analytics, 

its application, mechanisms for sequencing network for deep convolutional networks, 

updates in MSpin algorithm, and more real-world case studies. The future applications for 

machine learning in aerospace manufacturing will involve the latest computer algorithms. 

The algorithms for the development of RNN models have to be improved to understand 

branching and conjugate turning sequences in the assembly of a fighter aircraft. There is a 

need to understand explainable AI that can provide security in systems using machine 

learning applications. Machine learning techniques are expected to be used to develop 

turbulence in drone productions. The use of deep learning techniques to analyze the 

operational parameters of drones is an emerging domain of research. 

8.1. Explainable AI in Aerospace Manufacturing 

Explainable AI in aerospace manufacturing. State-of-the-art artificial intelligence techniques, 

such as deep learning, show a great level of technical performance in various datasets and 

scenarios. This makes them very attractive in a number of applications, including those in the 

aerospace manufacturing sector. However, deep learning techniques are associated with 

several challenges in terms of interpretability. This makes it difficult to utilize the model 

predictions for decision making in the domain of aerospace manufacturing, where 

certification authorities demand that machine learning models provide proof of 

trustworthiness, especially for AI-based active learning. This problem has given rise to a new 

area called Explainable AI (XAI), which specifically focuses on developing machine learning 

models for developing explainable predictions. 

We believe that the emphasis of our work in explainable AI can be particularly beneficial for 

machine learning applications in the U.S. aerospace and manufacturing industry. The vision 
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of AI/ML in the aerospace industry is to move from organizational domains where AI models 

deliver predictions, models supported by experts that deliver decisions, to AI models that 

deliver decisions that are federated with experts to increase safety and reduce certification 

barrier to entry for AI applications in aviation. The replacement of domain knowledge in a 

predictive model supported decision by deep learning has the potential to remove human-

based biases and systematic variability from a decision. While this will be useful in certain 

domains such as automobile sales, it is far from acceptable when you are operating in an 

environment such as aerospace, which is regulated from sensor to individual components to 

entire systems up to the global air traffic management network in the sky. This, in turn, creates 

an innovative use case of AI/ML in aerospace, called Trusted AI, which gives you a range of 

explainable AI in aerospace, design thinking, and implications. 
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