Change Management in Predictive Maintenance for IoT-Enabled Autonomous Vehicles: Harnessing Computational Intelligence for Enhanced Operational Efficiency

Authors

  • Dr. Giovanna Di Guglielmo Associate Professor of Information Engineering, University of Pisa, Italy Author

Keywords:

sensor

Abstract

Efficient Predictive Maintenance (PdM) is critical for reducing maintenance costs, improving operational safety, minimizing unplanned downtime, and prolonging the life of rotating machinery, particularly within the automotive industry. In this context, IoT-enabled systems offer comprehensive data monitoring and maintenance tools, including vibration monitoring systems and lubrication solutions, which are essential for implementing preventive measures to enhance equipment lifespan and operational stability. However, challenges persist when applying standard sensor or network technologies, such as high operational costs, ongoing maintenance of network systems, and sensor burnout due to extreme operational conditions. Each standard sensor typically collects data on a singular piece of equipment, which can exacerbate network-related expenses. These high costs associated with individual sensors can pose significant financial challenges for equipment vendors in mass production, ultimately hindering operational profitability. This paper explores how leveraging computational intelligence can address these limitations and optimize predictive maintenance strategies in IoT-enabled autonomous vehicles, aligning them with effective change management practices.

Downloads

Download data is not yet available.

References

Vemoori, Vamsi. "Envisioning a Seamless Multi-Modal Transportation Network: A Framework for Connected Intelligence, Real-Time Data Exchange, and Adaptive Cybersecurity in Autonomous Vehicle Ecosystems." Australian Journal of Machine Learning Research & Applications 4.1 (2024): 98-131.

Sadhu, Ashok Kumar Reddy, et al. "Enhancing Customer Service Automation and User Satisfaction: An Exploration of AI-powered Chatbot Implementation within Customer Relationship Management Systems." Journal of Computational Intelligence and Robotics 4.1 (2024): 103-123.

Tatineni, Sumanth. "Applying DevOps Practices for Quality and Reliability Improvement in Cloud-Based Systems." Technix international journal for engineering research (TIJER)10.11 (2023): 374-380.

Perumalsamy, Jegatheeswari, Chandrashekar Althati, and Lavanya Shanmugam. "Advanced AI and Machine Learning Techniques for Predictive Analytics in Annuity Products: Enhancing Risk Assessment and Pricing Accuracy." Journal of Artificial Intelligence Research 2.2 (2022): 51-82.

Venkatasubbu, Selvakumar, Jegatheeswari Perumalsamy, and Subhan Baba Mohammed. "Machine Learning Models for Life Insurance Risk Assessment: Techniques, Applications, and Case Studies." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 423-449.

Mohammed, Subhan Baba, Bhavani Krothapalli, and Chandrashekar Althat. "Advanced Techniques for Storage Optimization in Resource-Constrained Systems Using AI and Machine Learning." Journal of Science & Technology 4.1 (2023): 89-125.

Krothapalli, Bhavani, Lavanya Shanmugam, and Subhan Baba Mohammed. "Machine Learning Algorithms for Efficient Storage Management in Resource-Limited Systems: Techniques and Applications." Journal of Artificial Intelligence Research and Applications 3.1 (2023): 406-442.

Devan, Munivel, Chandrashekar Althati, and Jegatheeswari Perumalsamy. "Real-Time Data Analytics for Fraud Detection in Investment Banking Using AI and Machine Learning: Techniques and Case Studies." Cybersecurity and Network Defense Research 3.1 (2023): 25-56.

Althati, Chandrashekar, Jegatheeswari Perumalsamy, and Bhargav Kumar Konidena. "Enhancing Life Insurance Risk Models with AI: Predictive Analytics, Data Integration, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 448-486.

Selvaraj, Amsa, Bhavani Krothapalli, and Lavanya Shanmugam. "AI and Machine Learning Techniques for Automated Test Data Generation in FinTech: Enhancing Accuracy and Efficiency." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 329-363.

Konidena, Bhargav Kumar, Jesu Narkarunai Arasu Malaiyappan, and Anish Tadimarri. "Ethical Considerations in the Development and Deployment of AI Systems." European Journal of Technology 8.2 (2024): 41-53.

Devan, Munivel, et al. "AI-driven Solutions for Cloud Compliance Challenges." AIJMR-Advanced International Journal of Multidisciplinary Research 2.2 (2024).

Katari, Monish, Gowrisankar Krishnamoorthy, and Jawaharbabu Jeyaraman. "Novel Materials and Processes for Miniaturization in Semiconductor Packaging." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 2.1 (2024): 251-271.

Tatineni, Sumanth, and Naga Vikas Chakilam. "Integrating Artificial Intelligence with DevOps for Intelligent Infrastructure Management: Optimizing Resource Allocation and Performance in Cloud-Native Applications." Journal of Bioinformatics and Artificial Intelligence 4.1 (2024): 109-142.

Keerthika, R., and Ms SS Abinayaa, eds. Algorithms of Intelligence: Exploring the World of Machine Learning. Inkbound Publishers, 2022.

Sistla, Sai Mani Krishna, and Bhargav Kumar Konidena. "IoT-Edge Healthcare Solutions Empowered by Machine Learning." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 126-135.

Katari, Monish, Lavanya Shanmugam, and Jesu Narkarunai Arasu Malaiyappan. "Integration of AI and Machine Learning in Semiconductor Manufacturing for Defect Detection and Yield Improvement." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 3.1 (2024): 418-431.

Makka, A. K. A. “Optimizing SAP Basis Administration for Advanced Computer Architectures and High-Performance Data Centers”. Journal of Science & Technology, vol. 1, no. 1, Oct. 2020, pp. 242-279, https://thesciencebrigade.com/jst/article/view/282.

Tembhekar, Prachi, Munivel Devan, and Jawaharbabu Jeyaraman. "Role of GenAI in Automated Code Generation within DevOps Practices: Explore how Generative AI." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 500-512.

Peddisetty, Namratha, and Amith Kumar Reddy. "Leveraging Artificial Intelligence for Predictive Change Management in Information Systems Projects." Distributed Learning and Broad Applications in Scientific Research 10 (2024): 88-94.

Venkataramanan, Srinivasan, et al. "Leveraging Artificial Intelligence for Enhanced Sales Forecasting Accuracy: A Review of AI-Driven Techniques and Practical Applications in Customer Relationship Management Systems." Australian Journal of Machine Learning Research & Applications 4.1 (2024): 267-287.

Downloads

Published

17-03-2024

How to Cite

[1]
Dr. Giovanna Di Guglielmo, “Change Management in Predictive Maintenance for IoT-Enabled Autonomous Vehicles: Harnessing Computational Intelligence for Enhanced Operational Efficiency”, J. of Artificial Int. Research and App., vol. 4, no. 1, pp. 117–146, Mar. 2024, Accessed: Dec. 23, 2024. [Online]. Available: https://aimlstudies.co.uk/index.php/jaira/article/view/175