The Application of Machine Learning for Enhancing Process Control in U.S. Manufacturing Supply Chains

Authors

  • Dr. Helena Santos Associate Professor of Electrical and Computer Engineering, University of Porto, Portugal Author

Keywords:

Process Control, . Manufacturing Supply Chains

Abstract

Process control is a critical aspect of ensuring efficient and effective production within manufacturing supply chains. It encompasses the methods and technologies used to monitor and regulate the various stages of production to maintain quality, consistency, and safety. Process control plays a pivotal role in minimizing waste, optimizing resource utilization, and meeting production targets. Additionally, it is essential for ensuring compliance with safety regulations and quality standards, thereby impacting the overall operations of a manufacturing supply chain [1].

In the context of (bio)chemical processes, machine learning applications have been proposed to enhance process control by addressing uncertainties in data, ensuring robustness and safety guarantees, and supporting controller design. These applications aim to integrate with hierarchical control structures and utilize data for system identification, state and parameter estimation, and monitoring, ultimately improving control performance and safety. Similarly, in semiconductor manufacturing, reinforcement learning techniques have been explored for adaptive run-to-run optimization, robust multistage process control, and quality improvement, highlighting the diverse applications of machine learning in enhancing process control within manufacturing supply chains [2].

Downloads

Download data is not yet available.

References

Pelluru, Karthik. "Integrate security practices and compliance requirements into DevOps processes." MZ Computing Journal 2.2 (2021): 1-19.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence and Blockchain Integration for Enhanced Security in Insurance: Techniques, Models, and Real-World Applications." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 187-224.

Singh, Puneet. "Transforming Healthcare through AI: Enhancing Patient Outcomes and Bridging Accessibility Gaps." Journal of Artificial Intelligence Research 4.1 (2024): 220-232.

Rambabu, Venkatesha Prabhu, Chandrashekar Althati, and Amsa Selvaraj. "ETL vs. ELT: Optimizing Data Integration for Retail and Insurance Analytics." Journal of Computational Intelligence and Robotics 3.1 (2023): 37-84.

Krothapalli, Bhavani, Chandan Jnana Murthy, and Jim Todd Sunder Singh. "Cross-Industry Enterprise Integration: Best Practices from Insurance and Retail." Journal of Science & Technology 3.2 (2022): 46-97.

Amsa Selvaraj, Priya Ranjan Parida, and Chandan Jnana Murthy, “Enhancing Automotive Safety and Efficiency through AI/ML-Driven Telematics Solutions”, J. Computational Intel. & Robotics, vol. 3, no. 2, pp. 82–122, Oct. 2023.

Pradeep Manivannan, Sharmila Ramasundaram Sudharsanam, and Jim Todd Sunder Singh, “Leveraging Integrated Customer Data Platforms and MarTech for Seamless and Personalized Customer Journey Optimization”, J. of Artificial Int. Research and App., vol. 1, no. 1, pp. 139–174, Mar. 2021

Jasrotia, Manojdeep Singh. "Unlocking Efficiency: A Comprehensive Approach to Lean In-Plant Logistics." International Journal of Science and Research (IJSR) 13.3 (2024): 1579-1587.

Gayam, Swaroop Reddy. "AI for Supply Chain Visibility in E-Commerce: Techniques for Real-Time Tracking, Inventory Management, and Demand Forecasting." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 218-251.

Nimmagadda, Venkata Siva Prakash. "AI-Powered Predictive Analytics for Credit Risk Assessment in Finance: Advanced Techniques, Models, and Real-World Applications." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 251-286.

Putha, Sudharshan. "AI-Driven Decision Support Systems for Insurance Policy Management." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 326-359.

Sahu, Mohit Kumar. "Machine Learning Algorithms for Automated Underwriting in Insurance: Techniques, Tools, and Real-World Applications." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 286-326.

Kasaraneni, Bhavani Prasad. "Advanced AI Techniques for Fraud Detection in Travel Insurance: Models, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 455-513.

Kondapaka, Krishna Kanth. "Advanced AI Models for Portfolio Management and Optimization in Finance: Techniques, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 560-597.

Kasaraneni, Ramana Kumar. "AI-Enhanced Claims Processing in Insurance: Automation and Efficiency." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 669-705.

Pattyam, Sandeep Pushyamitra. "Advanced AI Algorithms for Predictive Analytics: Techniques and Applications in Real-Time Data Processing and Decision Making." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 359-384.

Kuna, Siva Sarana. "AI-Powered Customer Service Solutions in Insurance: Techniques, Tools, and Best Practices." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 588-629.

Gayam, Swaroop Reddy. "Artificial Intelligence for Financial Fraud Detection: Advanced Techniques for Anomaly Detection, Pattern Recognition, and Risk Mitigation." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 377-412.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Automated Loan Underwriting in Banking: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 174-218.

Putha, Sudharshan. "AI-Driven Molecular Docking Simulations: Enhancing the Precision of Drug-Target Interactions in Computational Chemistry." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 260-300.

Sahu, Mohit Kumar. "Machine Learning Algorithms for Enhancing Supplier Relationship Management in Retail: Techniques, Tools, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 227-271.

Kasaraneni, Bhavani Prasad. "Advanced AI Techniques for Predictive Maintenance in Health Insurance: Models, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 513-546.

Kondapaka, Krishna Kanth. "Advanced AI Models for Retail Supply Chain Network Design and Optimization: Techniques, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 598-636.

Kasaraneni, Ramana Kumar. "AI-Enhanced Clinical Trial Design: Streamlining Patient Recruitment, Monitoring, and Outcome Prediction." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 706-746.

Pattyam, Sandeep Pushyamitra. "AI in Data Science for Financial Services: Techniques for Fraud Detection, Risk Management, and Investment Strategies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 385-416.

Kuna, Siva Sarana. "AI-Powered Techniques for Claims Triage in Property Insurance: Models, Tools, and Real-World Applications." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 208-245.

Pradeep Manivannan, Sharmila Ramasundaram Sudharsanam, and Jim Todd Sunder Singh, “Trends, Future and Potential of Omnichannel Marketing through Integrated MarTech Stacks”, J. Sci. Tech., vol. 2, no. 2, pp. 269–300, Jun. 2021

Selvaraj, Akila, Praveen Sivathapandi, and Deepak Venkatachalam. "Artificial Intelligence-Enhanced Telematics Systems for Real-Time Driver Behaviour Analysis and Accident Prevention in Modern Vehicles." Journal of Artificial Intelligence Research 3.1 (2023): 198-239.

Paul, Debasish, Gowrisankar Krishnamoorthy, and Sharmila Ramasundaram Sudharsanam. "Platform Engineering for Continuous Integration in Enterprise Cloud Environments: A Case Study Approach." Journal of Science & Technology 2.3 (2021): 179-214.

Namperumal, Gunaseelan, Akila Selvaraj, and Priya Ranjan Parida. "Optimizing Talent Management in Cloud-Based HCM Systems: Leveraging Machine Learning for Personalized Employee Development Programs." Journal of Science & Technology 3.6 (2022): 1-42.

Soundarapandiyan, Rajalakshmi, Priya Ranjan Parida, and Yeswanth Surampudi. "Comprehensive Cybersecurity Framework for Connected Vehicles: Securing Vehicle-to-Everything (V2X) Communication Against Emerging Threats in the Automotive Industry." Cybersecurity and Network Defense Research 3.2 (2023): 1-41.

Sivathapandi, Praveen, Debasish Paul, and Akila Selvaraj. "AI-Generated Synthetic Data for Stress Testing Financial Systems: A Machine Learning Approach to Scenario Analysis and Risk Management." Journal of Artificial Intelligence Research 2.1 (2022): 246-287.

Sudharsanam, Sharmila Ramasundaram, Deepak Venkatachalam, and Debasish Paul. "Securing AI/ML Operations in Multi-Cloud Environments: Best Practices for Data Privacy, Model Integrity, and Regulatory Compliance." Journal of Science & Technology 3.4 (2022): 52-87.

Downloads

Published

18-09-2024

How to Cite

[1]
Dr. Helena Santos, “The Application of Machine Learning for Enhancing Process Control in U.S. Manufacturing Supply Chains”, J. of Artificial Int. Research and App., vol. 4, no. 2, pp. 192–200, Sep. 2024, Accessed: Jan. 21, 2025. [Online]. Available: https://aimlstudies.co.uk/index.php/jaira/article/view/238

Similar Articles

1-10 of 150

You may also start an advanced similarity search for this article.