Blockchain-Based Decentralized AI Systems: Enhancing Data Integrity and Model Trustworthiness

Authors

  • Alice Thompson Ph.D., Senior Researcher, Innovation Labs, San Francisco, USA Author

Keywords:

Blockchain, artificial intelligence

Abstract

The integration of blockchain technology with artificial intelligence (AI) systems has emerged as a transformative approach to addressing challenges related to data integrity and trustworthiness in AI predictions. This paper explores how decentralized blockchain infrastructures can enhance the security and reliability of AI models by preventing tampering and ensuring the authenticity of data used for training and inference. By establishing immutable records of data transactions and enabling transparent model evaluation, blockchain can provide robust solutions for data provenance and accountability. The paper discusses the technical frameworks for integrating blockchain with AI, examines various use cases across industries, and identifies the implications for stakeholders in AI development. Ultimately, this research highlights the potential of blockchain-based decentralized AI systems to foster greater trust in AI technologies, thereby promoting broader adoption and acceptance.

Downloads

Download data is not yet available.

References

Gayam, Swaroop Reddy. "Artificial Intelligence in E-Commerce: Advanced Techniques for Personalized Recommendations, Customer Segmentation, and Dynamic Pricing." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 105-150.

Chitta, Subrahmanyasarma, et al. "Decentralized Finance (DeFi): A Comprehensive Study of Protocols and Applications." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 124-145.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Predictive Maintenance of Banking IT Infrastructure: Advanced Techniques, Applications, and Real-World Case Studies." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 86-122.

Putha, Sudharshan. "AI-Driven Predictive Analytics for Maintenance and Reliability Engineering in Manufacturing." Journal of AI in Healthcare and Medicine 2.1 (2022): 383-417.

Sahu, Mohit Kumar. "Machine Learning for Personalized Marketing and Customer Engagement in Retail: Techniques, Models, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 219-254.

Kasaraneni, Bhavani Prasad. "AI-Driven Policy Administration in Life Insurance: Enhancing Efficiency, Accuracy, and Customer Experience." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 407-458.

Vangoor, Vinay Kumar Reddy, et al. "Energy-Efficient Consensus Mechanisms for Sustainable Blockchain Networks." Journal of Science & Technology 1.1 (2020): 488-510.

Kondapaka, Krishna Kanth. "AI-Driven Demand Sensing and Response Strategies in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 459-487.

Kasaraneni, Ramana Kumar. "AI-Enhanced Process Optimization in Manufacturing: Leveraging Data Analytics for Continuous Improvement." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 488-530.

Pattyam, Sandeep Pushyamitra. "AI-Enhanced Natural Language Processing: Techniques for Automated Text Analysis, Sentiment Detection, and Conversational Agents." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 371-406.

Kuna, Siva Sarana. "The Role of Natural Language Processing in Enhancing Insurance Document Processing." Journal of Bioinformatics and Artificial Intelligence 3.1 (2023): 289-335.

George, Jabin Geevarghese, and Arun Rasika Karunakaran. "Enabling Scalable Financial Automation in Omni-Channel Retail: Strategies for ERP and Cloud Integration." Human-Computer Interaction Perspectives 1.2 (2021): 10-49.

Katari, Pranadeep, et al. "Cross-Chain Asset Transfer: Implementing Atomic Swaps for Blockchain Interoperability." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 102-123.

Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "SLP (Systematic Layout Planning) for Enhanced Plant Layout Efficiency." International Journal of Science and Research (IJSR) 13.6 (2024): 820-827.

Venkata, Ashok Kumar Pamidi, et al. "Implementing Privacy-Preserving Blockchain Transactions using Zero-Knowledge Proofs." Blockchain Technology and Distributed Systems 3.1 (2023): 21-42.

Namperumal, Gunaseelan, Akila Selvaraj, and Deepak Venkatachalam. "Machine Learning Models Trained on Synthetic Transaction Data: Enhancing Anti-Money Laundering (AML) Efforts in the Financial Services Industry." Journal of Artificial Intelligence Research 2.2 (2022): 183-218.

Soundarapandiyan, Rajalakshmi, Praveen Sivathapandi, and Debasish Paul. "AI-Driven Synthetic Data Generation for Financial Product Development: Accelerating Innovation in Banking and Fintech through Realistic Data Simulation." Journal of Artificial Intelligence Research and Applications 2.2 (2022): 261-303.

Pradeep Manivannan, Priya Ranjan Parida, and Chandan Jnana Murthy, “Strategic Implementation and Metrics of Personalization in E-Commerce Platforms: An In-Depth Analysis”, Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, pp. 59–96, Aug. 2021

Yellepeddi, Sai Manoj, et al. "Blockchain Interoperability: Bridging Different Distributed Ledger Technologies." Blockchain Technology and Distributed Systems 2.1 (2022): 108-129.

Downloads

Published

01-10-2024

How to Cite

[1]
A. Thompson, “Blockchain-Based Decentralized AI Systems: Enhancing Data Integrity and Model Trustworthiness”, J. of Artificial Int. Research and App., vol. 4, no. 2, pp. 70–76, Oct. 2024, Accessed: Nov. 07, 2024. [Online]. Available: https://aimlstudies.co.uk/index.php/jaira/article/view/259