AI-driven Drug Repurposing for Novel Therapeutic Applications

Utilizes AI algorithms to identify existing drugs with potential therapeutic applications in new disease areas

Authors

  • Dr. Natalia Petrova Associate Professor of Biomedical Engineering, National Technical University of Ukraine "KPI" Author

Keywords:

AI, drug repurposing, therapeutic applications, machine learning, deep learning, natural language processing, ethical considerations, regulatory challenges

Abstract

The process of drug discovery and development is time-consuming, expensive, and often fails to yield new therapeutic options. Drug repurposing, the identification of new therapeutic uses for existing drugs, offers a faster and more cost-effective approach to bring new treatments to market. Artificial intelligence (AI) algorithms have revolutionized drug repurposing by enabling the rapid analysis of vast amounts of biological and clinical data to identify potential candidates. This paper explores the use of AI-driven drug repurposing for novel therapeutic applications, highlighting its advantages, challenges, and future prospects. Through a comprehensive review of the current literature, we discuss the various AI techniques used in drug repurposing, including machine learning, deep learning, and natural language processing. We also examine the ethical considerations and regulatory challenges associated with AI-driven drug repurposing. Finally, we present case studies that demonstrate the success of AI in identifying new therapeutic uses for existing drugs, showcasing its potential to transform the field of drug discovery and development.

Downloads

Download data is not yet available.

References

Tatineni, Sumanth. "Applying DevOps Practices for Quality and Reliability Improvement in Cloud-Based Systems." Technix international journal for engineering research (TIJER)10.11 (2023): 374-380.

Maruthi, Srihari, et al. "Deconstructing the Semantics of Human-Centric AI: A Linguistic Analysis." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 11-30.

Dodda, Sarath Babu, et al. "Ethical Deliberations in the Nexus of Artificial Intelligence and Moral Philosophy." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 31-43.

Jahangir, Zeib, et al. "Applications of ML and DL Algorithms in The Prediction, Diagnosis, and Prognosis of Alzheimer’s Disease." American Journal of Biomedical Science & Research 22.6 (2024): 779-786.

Ahmad, Ahsan, et al. "Prediction of Fetal Brain and Heart Abnormalties using Artificial Intelligence Algorithms: A Review." American Journal of Biomedical Science & Research 22.3 (2024): 456-466.

Zanke, Pankaj. "AI-Driven Fraud Detection Systems: A Comparative Study across Banking, Insurance, and Healthcare." Advances in Deep Learning Techniques 3.2 (2023): 1-22.

Biswas, A., and W. Talukdar. “Robustness of Structured Data Extraction from In-Plane Rotated Documents Using Multi-Modal Large Language Models (LLM)”. Journal of Artificial Intelligence Research, vol. 4, no. 1, Mar. 2024, pp. 176-95, https://thesciencebrigade.com/JAIR/article/view/219.

Maruthi, Srihari, et al. "Toward a Hermeneutics of Explainability: Unraveling the Inner Workings of AI Systems." Journal of Artificial Intelligence Research and Applications 2.2 (2022): 27-44.

Biswas, Anjanava, and Wrick Talukdar. "Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation." arXiv preprint arXiv:2405.18346 (2024).

Yellu, Ramswaroop Reddy, et al. "AI Ethics-Challenges and Considerations: Examining ethical challenges and considerations in the development and deployment of artificial intelligence systems." African Journal of Artificial Intelligence and Sustainable Development 1.1 (2021): 9-16.

Maruthi, Srihari, et al. "Automated Planning and Scheduling in AI: Studying automated planning and scheduling techniques for efficient decision-making in artificial intelligence." African Journal of Artificial Intelligence and Sustainable Development 2.2 (2022): 14-25.

Ambati, Loknath Sai, et al. "Impact of healthcare information technology (HIT) on chronic disease conditions." MWAIS Proc 2021 (2021).

Singh, Amarjeet, and Alok Aggarwal. "Securing Microservice CICD Pipelines in Cloud Deployments through Infrastructure as Code Implementation Approach and Best Practices." Journal of Science & Technology 3.3 (2022): 51-65.

Zanke, Pankaj. "Enhancing Claims Processing Efficiency Through Data Analytics in Property & Casualty Insurance." Journal of Science & Technology 2.3 (2021): 69-92.

Pulimamidi, R., and G. P. Buddha. "Applications of Artificial Intelligence Based Technologies in The Healthcare Industry." Tuijin Jishu/Journal of Propulsion Technology 44.3: 4513-4519.

Dodda, Sarath Babu, et al. "Conversational AI-Chatbot Architectures and Evaluation: Analyzing architectures and evaluation methods for conversational AI systems, including chatbots, virtual assistants, and dialogue systems." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 13-20.

Ponnusamy, Sivakumar, and Dinesh Eswararaj. "Modernization of Legacy Applications and Data: A Comprehensive Review on Implementation Challenges, Effective Strategies and Best Practices." (2024): 81-106.

Maruthi, Srihari, et al. "Language Model Interpretability-Explainable AI Methods: Exploring explainable AI methods for interpreting and explaining the decisions made by language models to enhance transparency and trustworthiness." Australian Journal of Machine Learning Research & Applications 2.2 (2022): 1-9.

Dodda, Sarath Babu, et al. "Federated Learning for Privacy-Preserving Collaborative AI: Exploring federated learning techniques for training AI models collaboratively while preserving data privacy." Australian Journal of Machine Learning Research & Applications 2.1 (2022): 13-23.

Zanke, Pankaj. "Machine Learning Approaches for Credit Risk Assessment in Banking and Insurance." Internet of Things and Edge Computing Journal 3.1 (2023): 29-47.

Maruthi, Srihari, et al. "Temporal Reasoning in AI Systems: Studying temporal reasoning techniques and their applications in AI systems for modeling dynamic environments." Journal of AI-Assisted Scientific Discovery 2.2 (2022): 22-28.

Yellu, Ramswaroop Reddy, et al. "Transferable Adversarial Examples in AI: Examining transferable adversarial examples and their implications for the robustness of AI systems." Hong Kong Journal of AI and Medicine 2.2 (2022): 12-20.

Reddy Yellu, R., et al. "Transferable Adversarial Examples in AI: Examining transferable adversarial examples and their implications for the robustness of AI systems. Hong Kong Journal of AI and Medicine, 2 (2), 12-20." (2022).

Zanke, Pankaj, and Dipti Sontakke. "Artificial Intelligence Applications in Predictive Underwriting for Commercial Lines Insurance." Advances in Deep Learning Techniques 1.1 (2021): 23-38.

Singh, Amarjeet, and Alok Aggarwal. "Artificial Intelligence based Microservices Pod configuration Management Systems on AWS Kubernetes Service." Journal of Artificial Intelligence Research 3.1 (2023): 24-37.

Downloads

Published

07-06-2024

How to Cite

[1]
Dr. Natalia Petrova, “AI-driven Drug Repurposing for Novel Therapeutic Applications: Utilizes AI algorithms to identify existing drugs with potential therapeutic applications in new disease areas”, J. of Artificial Int. Research and App., vol. 4, no. 1, pp. 182–190, Jun. 2024, Accessed: Nov. 24, 2024. [Online]. Available: https://aimlstudies.co.uk/index.php/jaira/article/view/33

Similar Articles

231-239 of 239

You may also start an advanced similarity search for this article.