Quantum Neural Networks - Architectures and Training: Exploring architectures and training methods for quantum neural networks (QNNs) to perform quantum-enhanced learning and decision-making tasks
Keywords:
QNN modelsAbstract
Quantum Neural Networks (QNNs) have emerged as a promising approach to leverage quantum computing advantages in machine learning tasks. This paper provides a comprehensive overview of QNN architectures and training methods for quantum-enhanced learning and decision-making. We discuss various QNN models, including Quantum Boltzmann Machines, Quantum Hopfield Networks, and Quantum Perceptrons, highlighting their unique features and applications. Furthermore, we review state-of-the-art training algorithms such as quantum gradient descent and quantum backpropagation, emphasizing their role in optimizing QNNs. Through this paper, we aim to provide researchers and practitioners with a deeper understanding of QNNs and inspire further advancements in this rapidly evolving field.
Downloads
References
Tatineni, Sumanth, and Anirudh Mustyala. "Advanced AI Techniques for Real-Time Anomaly Detection and Incident Response in DevOps Environments: Ensuring Robust Security and Compliance." Journal of Computational Intelligence and Robotics 2.1 (2022): 88-121.
Biswas, A., and W. Talukdar. “Robustness of Structured Data Extraction from In-Plane Rotated Documents Using Multi-Modal Large Language Models (LLM)”. Journal of Artificial Intelligence Research, vol. 4, no. 1, Mar. 2024, pp. 176-95, https://thesciencebrigade.com/JAIR/article/view/219.
Bojja, Giridhar Reddy, Jun Liu, and Loknath Sai Ambati. "Health Information systems capabilities and Hospital performance-An SEM analysis." AMCIS. 2021.
Vemoori, Vamsi. "Comparative Assessment of Technological Advancements in Autonomous Vehicles, Electric Vehicles, and Hybrid Vehicles vis-à-vis Manual Vehicles: A Multi-Criteria Analysis Considering Environmental Sustainability, Economic Feasibility, and Regulatory Frameworks." Journal of Artificial Intelligence Research 1.1 (2021): 66-98.
Jeyaraman, Jawaharbabu, and Muthukrishnan Muthusubramanian. "Data Engineering Evolution: Embracing Cloud Computing, Machine Learning, and AI Technologies." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 1.1 (2023): 85-89.
Shahane, Vishal. "Investigating the Efficacy of Machine Learning Models for Automated Failure Detection and Root Cause Analysis in Cloud Service Infrastructure." African Journal of Artificial Intelligence and Sustainable Development2.2 (2022): 26-51.
Devan, Munivel, Ravish Tillu, and Lavanya Shanmugam. "Personalized Financial Recommendations: Real-Time AI-ML Analytics in Wealth Management." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online)2.3 (2023): 547-559.
Abouelyazid, Mahmoud. "YOLOv4-based Deep Learning Approach for Personal Protective Equipment Detection." Journal of Sustainable Urban Futures 12.3 (2022): 1-12.
Prabhod, Kummaragunta Joel. "Leveraging Generative AI and Foundation Models for Personalized Healthcare: Predictive Analytics and Custom Treatment Plans Using Deep Learning Algorithms." Journal of AI in Healthcare and Medicine 4.1 (2024): 1-23.
Tatineni, Sumanth. "Applying DevOps Practices for Quality and Reliability Improvement in Cloud-Based Systems." Technix international journal for engineering research (TIJER)10.11 (2023): 374-380.
Althati, Chandrashekar, Manish Tomar, and Lavanya Shanmugam. "Enhancing Data Integration and Management: The Role of AI and Machine Learning in Modern Data Platforms." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 2.1 (2024): 220-232.