Leveraging Deep Learning for Image-Based Risk Assessment in Project Management

Authors

  • Michael Thompson Ph.D., Associate Professor of Project Management, University of Technology, San Francisco, USA Author

Keywords:

Deep Learning, Image-Based Risk Assessment

Abstract

The integration of deep learning techniques in project management presents a transformative opportunity for enhancing risk assessment processes. This paper explores the application of deep learning models for performing visual risk assessments in project environments, emphasizing the identification of potential hazards based on image analysis from work sites. The study reviews various deep learning architectures, such as convolutional neural networks (CNNs), and their efficacy in analyzing images to detect risks, ensuring proactive measures are implemented. Furthermore, the research highlights case studies demonstrating successful implementations of these technologies, illustrating their effectiveness in real-world scenarios. The paper concludes with a discussion of the challenges and limitations of applying deep learning in project risk assessment, along with future research directions aimed at improving model accuracy and reliability.

Downloads

Download data is not yet available.

References

Gayam, Swaroop Reddy. "Deep Learning for Predictive Maintenance: Advanced Techniques for Fault Detection, Prognostics, and Maintenance Scheduling in Industrial Systems." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 53-85.

George, Jabin Geevarghese. "Augmenting Enterprise Systems and Financial Processes for transforming Architecture for a Major Genomics Industry Leader." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 242-285.

Yellepeddi, Sai Manoj, et al. "AI-Powered Intrusion Detection Systems: Real-World Performance Analysis." Journal of AI-Assisted Scientific Discovery 4.1 (2024): 279-289.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Supply Chain Visibility and Transparency in Retail: Advanced Techniques, Models, and Real-World Case Studies." Journal of Machine Learning in Pharmaceutical Research 3.1 (2023): 87-120.

Putha, Sudharshan. "AI-Driven Predictive Maintenance for Smart Manufacturing: Enhancing Equipment Reliability and Reducing Downtime." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 160-203.

Sahu, Mohit Kumar. "Advanced AI Techniques for Predictive Maintenance in Autonomous Vehicles: Enhancing Reliability and Safety." Journal of AI in Healthcare and Medicine 2.1 (2022): 263-304.

Kondapaka, Krishna Kanth. "AI-Driven Predictive Maintenance for Insured Assets: Advanced Techniques, Applications, and Real-World Case Studies." Journal of AI in Healthcare and Medicine 1.2 (2021): 146-187.

Kasaraneni, Ramana Kumar. "AI-Enhanced Telematics Systems for Fleet Management: Optimizing Route Planning and Resource Allocation." Journal of AI in Healthcare and Medicine 1.2 (2021): 187-222.

Pattyam, Sandeep Pushyamitra. "Artificial Intelligence in Cybersecurity: Advanced Methods for Threat Detection, Risk Assessment, and Incident Response." Journal of AI in Healthcare and Medicine 1.2 (2021): 83-108.

Alluri, Venkat Rama Raju, et al. "Automated Testing Strategies for Microservices: A DevOps Approach." Distributed Learning and Broad Applications in Scientific Research 4 (2018): 101-121.

C. Bishop, Pattern Recognition and Machine Learning. New York, NY, USA: Springer, 2006.

D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

Downloads

Published

12-12-2023

How to Cite

[1]
M. Thompson, “Leveraging Deep Learning for Image-Based Risk Assessment in Project Management”, J. of Artificial Int. Research and App., vol. 3, no. 2, pp. 706–711, Dec. 2023, Accessed: Nov. 22, 2024. [Online]. Available: https://aimlstudies.co.uk/index.php/jaira/article/view/252

Similar Articles

41-50 of 183

You may also start an advanced similarity search for this article.